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Abstract

Video instance segmentation (VIS) is seen as a fundamental problem for other video-
analysis tasks which generally requires many computational resources. Current research
on vision problems present big pretrained foundational models that work well in many
downstream tasks. Motivated by this, we exploit such a self-supervised feature extractor
in the context of video instance segmentation. In our experiments we shed light on which
modifications are necessary to ensure its effectiveness in a VIS setting. Furthermore, we
show that fundamental concepts like optical flow can be used to improve the tracking
performance or speed up the testing process and propose methods to do so. Although the
results show that we cannot compete with current state-of-the-art methods, they show
that this is a promising direction of future research.

Die Videoinstanzsegmentierung (VIS) gilt als ein grundlegendes Problem fiir andere
Videoanalyseaufgaben, das im Allgemeinen viele Rechenkapazitédten erfordert. Aktuelle
Forschung zu Bildverarbeitungsproblemen présentiert grofe vortrainierte Grundlagenmod-
elle, die gut in vielen nachgelagerten Aufgaben eingesetzt werden konnen. Aus diesem
Grund betrachten wir einen solchen selbstiiberwachten Merkmalsextraktor im Zusammen-
hang mit der Segmentierung von Videoinstanzen. In unseren Experimenten beleuchten
wir, welche Modifikationen notwendig sind, damit sie in einem VIS-Problem funktion-
ieren. Dartiiber hinaus zeigen wir, dass grundlegende Konzepte wie der optische Fluss
verwendet werden konnen, um die Tracking-Leistung zu verbessern oder den Testvorgang
zu beschleunigen, und schlagen entsprechende Methoden vor. Obwohl die Ergebnisse
zeigen, dass wir nicht mit den aktuellen Spitzenmethoden konkurrieren kénnen, zeigen
sie, dass dies eine vielversprechende Richtung fiir zukiinftige Forschung ist.




1 Introduction

Recently, automated driving was authorized in multiple countries [9]. Moreover, approxi-
mately 330k hours of video content is uploaded to YouTube daily [7, 1]. Similarly, TikTok
accumulates millions of posted videos per day [35]. Thus, moving picture content/videos
are almost endless, and the consumption and creation of such media are rising.

This rise creates multiple challenges: How can we make video consumption more acces-
sible? How can we describe and categorize these huge masses of video content? How
can we learn from them? And many more. Consequently, it is no surprise that many
research areas have emerged from these challenges and opportunities. For instance, action
recognition [29] and temporal action segmentation [11] can help in the annotation of
video segments. Video retrieval [32] can help in video recommender systems and video
captioning [40] can make videos more accessible to visually impaired people. Even if
not explicitly targeted at videos, other research areas also have to deal with video data.
Automated driving uses visual cues for safety and functional purposes [15]. Augmented
reality must also deal with changing environments [14].

While many methods exist for extracting information from images, moving pictures provide
more visual and semantic cues that can benefit many tasks. In essence, it all boils down
to successfully representing video data well and extracting valuable information from
it because, as an example, all beforementioned problems could benefit from extracted
video-level object masks. Extracting these masks is the primary goal of video instance
segmentation (VIS), where individual object detection, segmentation, and tracking are
performed simultaneously [42].

Current models either perform well in accuracy but require lots of computational resources
or are resource-efficient but less performant. Therefore, we want to tackle this problem by
leveraging big pretrained foundational models for efficiency and taking advantage of their
favorable properties. However, these pretrained foundational models require modifications
to work satisfactorily.




The contributions of this work are as follows:

* We shed light on which design choices are necessary to use valuable foundational
models for the VIS problem and introduce new methods with these findings.

* We introduce optical flow as guidance in the testing procedure to speed up inference
and achieve higher accuracies.

* We show that methods with significantly less computational demands are realizable
when pretrained foundational models are utilized.

We will begin by giving an overview about the theoretical background and the current lines
of research of the VIS problem in Section 2.1. Furthermore we present the foundational
models and concepts that our method is based on. Chapter 3 describes the methods
that are developed in this thesis. We first describe our self-supervised vision transformer
backbone in Section 3.1. Afterwards, in Section 3.2 we present two different concepts
for how optical flow can be used as guidance in the testing procedure. In Chapter 4, we
conduct extensive experiments on the design choices and the performance of our DINO
backbones (Section 4.4.1), as well as our guidance with optical flow (Section 4.4.2). Lastly,
we summarize and discuss our findings and give an outlook on possible future work in
Chapter 5.




2 Related Work

In this chapter, we formally introduce the video instance segmentation task and summarize
the research directions of the problem. Furthermore, we describe architectures that will
be further discussed in later chapters.

2.1 Video Instance Segmentation

Video instance segmentation (VIS) [42] is a problem introduced in 2019 as an extension
to related problems like image instance segmentation and video object detection and
segmentation. In VIS, we not only label instances in video frames but also segment
each instance and assign them an instance ID. In other words, we want to determine
to what class the object belongs to, where it lies, and its instance identification. It is
worth clarifying that in VIS, objects with the same class should be separately detected
(segmented and labeled) and tracked along the video.

More formally, as visualized in Figure 2.1, given an input video with 7" frames with a total
of I object instances, we get the following output for each instance hypothesis j:

- Class label: ¢;

- Segmentation map per frame: ﬁ%...a with p and ¢ referring to the beginning end ending
frame of the hypothesis, respectively

- Instance ID: j

- Bounding box per frame: E]%..ﬁ

- Confidence score: s;

Alongside the VIS problem definition, MaskTrack R-CNN [42] was proposed as the first
solution, which we will describe in detail in Section 2.2. Nowadays, VIS research can be
categorized into two lines of research: offline and online/real-time VIS.
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Figure 2.1: Visualization of the video instance segmentation problem. Video frames are
fed into the algorithm. As an output, we receive instance hypotheses (grey

boxes) with predicted segmentation masks and bounding boxes, class label
and detection confidence.




Solutions based on vision transformers are offline, and currently, they are the state-of-
the-art methods for VIS. In this type of solution, frames of a whole video are input into
a vision transformer, which treats it as a sequence decoding/prediction problem. VisTR
[37] was the first work to propose using vision transformers for VIS. Then, SeqFormer
[38] was built upon VisTR by modifying the model to attend to different areas in different
frames corresponding to the same instance. A meaningful video-level instance embedding
is calculated by weighting the feature embeddings extracted from the frame-level instance
bounding boxes. Although transformer-based methods are SOTA, they have one main
disadvantage: they are very computationally expensive because we have to feed whole
video sequences into the models. Consequently, these methods are limited because they
can only deal with short or low-resolution videos.

The second main line of research deals with the opposite problem: how to make VIS more
computationally efficient. One real-time solution was proposed with the InstanceFlow
[23] method. While popular Mask-R-CNN-based methods always rely on a first stage with
bounding box detection, InstanceFlow calculates a geometric center for each instance
mask and tracks the instances by calculating the flow between these mask centers. Another
work [43] tries to make video instance segmentation faster by omitting the calculation of
segmentation masks for each frame. Instead, they propagate the calculated segmentation
mask iteratively with a dense optical flow prediction for in-between frames. The prob-
lem with online solutions is that they cannot compete with offline methods in accuracy.
Consequently, VIS methods always have a tradeoff between accuracy and inference speed.

2.2 MaskTrack R-CNN

Mask R-CNN [18] is a widely used foundational semantic segmentation model built
on Faster R-CNN [31]. It consists of three branches, i.e., classification, bounding box
regression, and binary segmentation. The architecture consists of two stages; the first is
for proposing regions of interest, which are then used in the branches of the second stage.

The complete procedure of Mask R-CNN is as follows: a backbone generates a feature
map from the input image. This feature map is then fed into a region proposal network
(RPN), which proposes bounding boxes for regions of interest in the feature space. From
these bounding box regions of interest (Rols), features are then extracted from the
feature embedding with RoIAlign and processed in task-specific branches. These were
classification and bounding box detection for Faster R-CNN [31], which was extended for
image segmentation with a binary segmentation branch later in Mask R-CNN.




Update memory
Memory queue ¥ <

Score matrix Instance ids

Innerproduct —»EE—» [1]0]
A 47

it e ;

|
BBoxes | Additional cues
——— Classes i
Confidences

RolAIlgn

Figure 2.2: Architecture of MaskTrack R-CNN, copied from [42].

As previously explained, MaskTrack R-CNN [42] was introduced alongside the VIS problem
definition. It essentially extends Mask R-CNN [18] with a tracking branch to allow the
tracking of object instances across frames. Figure 2.2 shows the architecture of the model.

With the introduction of the tracking task, the training objective is now a minimization of
a joint loss function:
L = Lgs + Lbox + Limask + Ltrack- (2.1)

During training, one randomly sampled frame is input to the architecture as the query
frame and one additional random frame is used as a reference frame. Reference frames
provide tracking features extracted from ground-truth regions. These features are com-
puted by extracting the feature embeddings of regions of interest via RoIAlign and feeding
them into two fully connected layers. Then, query frames match their candidate bound-
ing boxes, that have enough bounding box overlap with detected instance regions, with
instance IDs.

During training, the tracking branch computes similarity between instance candidates
and already detected instances which are stored in an external memory by computing the
dot product of the candidates and detected instances stored tracking features.

Formally, the instance identification problem is treated as a multiclass classification prob-
lem. Here we have N + 1 ‘classes,” which actually refer to instances. The label assignment
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probability is calculated with

1+2§L11 eli In (2.2)

n=>0

pi(n) =
1+, I in

If instances were not seen before, their tracking features will be saved in the external

memory directly. If we see the same instance in later frames again, the tracking feature of
this instance will be overwritten with its newer tracking feature embedding.

The tracking loss L;.q., with y; as the ground truth instance label is is calculated with
Ltrack = - E lo.g(pz(yz))

The testing procedure differs from the training one since it not only relies on the similar
appearance of the features but also tries to ensure that labels, masks, and bounding boxes
between instance candidates and saved features align well. This is computed with

vi(n) =logp;(n) + alog s; + BIoU (b;, by) + vd(ci, cn) 2.3)

with «, 3, and v being hyperparameters that regulate the influence of the different cues.

The final instance label is the majority vote of instance labels, and the confidence scores
are calculated via an averaging of detection scores.

2.3 Vision Transformers

Transformers were introduced in the NLP domain first, including highly popular archi-
tectures like BERT [10] or different versions of GPT [30, 4], which the omnipresent tool
ChatGPT is based on, and adapted to vision problems afterward because of their good
performance.

While natural language can be fed in a sequence encoding/decoding architecture relatively
straight-forward, we need to rethink the process for visual inputs. Vision transformers
[12] generally take an input image and separate them into patches of a specific size,
i.e., 16 x 16 pixel patches. These patches are then transformed into sequence patch
embeddings, for example, via a linear projection, and the sequence is then wholly fed
as input to the transformer model. However, positional information of the patches must
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be explicitly modeled to preserve spatial information, which is often done by adding
positional encodings to the patch embeddings, as otherwise, this information would be
lost.

The effectiveness of the transformer architecture comes from its multi-head self-attention
mechanism [36], where attention is calculated for every query-token pair. This means
that for a patch in the input image (query), attention is calculated for all other image
patches (keys). In this context, attention refers to the relationship of a patch with another
patch and is computed via a similarity measure like dot-product. Afterward, these are
normalized with softmax to obtain scores. A single patch representation will, therefore,
be a weighted sum of the representations of all other patches, thus encoding global
information [24]. Multi-head attention refers to using multiple attention heads to model
different relationships of the input, with each head having its own weight matrices.

Formally, attention Z; € R™*% of a single head is calculated as follows [36, 24]

QiK'T>
Z; = softmax LV (2.4)
&

where ); (Queries), K; (Keys) and V; (Values) denote the input sequence X = (x1, z2, ..., x,) €
R™*? projected onto different weight matrices WZQ, wE, WY, ie.,

Qi = XWE
K, = XW;E
Vi=XwY

with W® e R4, WK e R4k WY e R4 4, = dj and i € {0,...,(h — 1)} for h
attention heads.

The attention outputs of the different heads are then concatenated to Z = [Zy, Z1, ..., Zy_1] €
R™*hdv We introduce an additional weight matrix W© € R49>* that the attention gets
projected on to obtain the multi-head attention output

M = ZW©° (2.5)
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A vision transformer [12] includes such multi-head attention modules in its encoder
blocks together with normalization, MLP, and residual connections. These encoder blocks
are stacked to form a powerful transformer encoder. An extra learnable token is added
to the input sequence that would otherwise only consist of combined positional and
patch embeddings. The whole architecture of a vanilla vision transformer is depicted in
Figure 2.3.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

]
|
|
1
1
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|
ey I 1
i - e @$ | rEE
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|
L L
|
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[class] embedding Linear Projection of Flattened Patches

[T T 1
N i . m m

Embedded
Patches
Figure 2.3: Architecture of a vanilla vision transformer, copied from [12].

Although transformers are shown to work well, they have three main limitations [24]:

* As the whole input is fed into the encoder as a sequence, we cannot deal with
high-resolution image inputs.

* The attention mechanism is very costly.
* Vision transformers need to be trained on very large datasets to perform well.

These limitations make them slow during inference and training and require a lot of
computational resources.

Self-distillation with no labels One challenge of vision problems is that getting annotated
datasets is hard and costly. To overcome such problems, many works have used self-
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supervision paradigms to train architectures without using annotations. In vision problems,
such self-supervised methods are mainly contrastive learning methods, i.e., similar images
should be moved together and dissimilar images further apart, which is often achieved by
treating an augmented version of the input image as a positive sample and other images
as negative samples [26]. Popular contrastive methods are the variants of MoCo [17, 8].
However, there are also popular non-contrastive methods like BYOL [16] or SWAV [5] that
only use positive samples. Regardless of the approach, the main idea of all methods is to
learn a good representation of the data that can benefit downstream tasks and compensate
for the need for large, labeled datasets.

As described earlier, transformer architectures generally need to be pretrained on large
datasets to work well. Thus, they could benefit from self-supervision. For this reason, in
self-distillation with no labels [6], commonly abbreviated as DINO, the authors analyze
what kind of properties self-supervised vision transformer features convey. For that, they
propose a self-supervised procedure inspired by knowledge distillation [19]. We refer to
the original DINO paper for the exact differentiation of the method to regular knowledge
distillation [6].

Two identical vision transformers with projection heads, referred to as student gg, and
teacher gg,, are introduced. These have different weights, while the teacher weights are
computed as a moving average of student networks from past iterations with centering
and sharpening afterwards to prevent mode collapse.

Self-supervision is introduced by multi-crop [5]. Here an input image gets differently
cropped multiple times: 2 ‘global’ crops with higher resolution and several ‘local’ crops,
which have smaller resolutions. The teacher architecture receives the global crops as input,
while the student architecture receives all crops.

The learning target is minimizing the difference between the two architectures distribu-
tions

rréin Z Z—Pt(x)logPs(x’) (2.6)
° zexd xf a;’/i‘;

where the distributions over K dimensions are calculated with

Py(z)0 = —SXP(ge. () /75)

- y Ts > 0 (27)
YK exp(go, (z)®) /7,)

The same formula applies to the teachers distribution P, but with 7, and ge, .
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DINO is trained on ImageNet without labels and with more augmentations in addition to
multi-crop and is trained with 8 x 8 or 16 x 16 patches on differently sized architectures
that align with ViT-small, ViT-base, and ViT-large [12]. A result of this work is that self-
supervised vision transformers encode information about the semantic segmentation of
images although they were not trained for this task, which is not inherent in other self-
supervised methods or supervised methods. The authors also show that their pretrained,
fixed DINO features can be used as meaningful feature embeddings for downstream tasks
like classification or semantic segmentation.

2.4 Optical Flow

Optical flow estimation is a well-explored area of research that originates in deep-learning-
free methods and denotes the apparent motion between images [20]. Early research
on optical flow reaches back to the Horn and Schunck method [20], where the authors
assume that the representation of a pixel stays constant between frames, which is called
the ‘brightness constancy assumption’. Lucas and Kanade add the assumption that pixels of
the same neighborhood move in the same direction [27]. These assumptions are modeled
into an energy minimization problem.

Later on, FlowNet [13] introduced the first deep-learning-based architecture where con-
volutional neural networks learn outputting optical flow fields in a supervised fashion.
Additionally, the authors introduced the synthetically generated FlyingChairs dataset
because previous datasets were comparably small, and CNNs rely on having a sufficient
amount of training data to perform well. However, extensions were necessary because the
models could not generalize well to real data and could not beat the performance of tradi-
tional methods. For this reason, FlowNet2.0 [21] stacks multiple FlowNet architectures to
estimate large and small motions in an iterative fashion.

Traditional methods for optical flow estimation are still important for newer methods that
are based on deep learning. For instance, PWC-Net [33] uses three of such important
concepts in optical flow estimation: image pyramids, warping, and cost volume calculation.
These are combined by using learnable feature pyramids. Large motion is estimated with
a warping layer and cost volumes are computed in another layer. Contrary to previous
methods, PWC-Net works in real-time (35 FPS) and can be trained end-to-end.

Optical flow computation is generally computationally expensive regardless of the method
because it is a 2D search problem where large 4D cost volumes are computed [41]. This

15



is especially a problem when dealing with high-resolution images where calculating such
a cost volume is often infeasible. To overcome this problem, Flow1D [41] treats the 2D
problem as two separate 1D problems. Here, the 2D search space is approximated into
two 1D directions via 1D attention and 1D correlation in orthogonal directions. This
architecture can calculate flow for input images with resolutions up to 8K, contrary to
PWC-Net, which can only run on small resolutions.

16



3 Methodology

This chapter provides a conceptual overview of the methods that were developed for this
work. First, we present a new backbone that leverages self-supervised DINO features.
In addition, we propose methods for using optical flow to guide the testing process.
Implementation details are discussed in Chapter 4.

3.1 Pretrained Video Instance Segmentation

Vision transformers, trained in a self-supervised fashion as proposed in DINO [42], were
shown to be able to provide meaningful feature embeddings for downstream tasks like
classification and semantic segmentation. Considering the resemblence of these down-
stream tasks to video instance segmentation, we suggest integrating DINO as a feature
extractor in video instance segmentation architectures.

We want to leverage foundational methods to solve VIS, hence our method is a variation of
the MaskTrack R-CNN architecture. Furthermore, our method is based on the findings of
[24]. In this work, vision transformers were used as backbones in Mask R-CNN architec-
tures. However, the authors introduce multiple changes in the Mask R-CNN modules and
training procedures. Although other self-supervised methods are featured in this work,
DINO vision transformers are also not addressed.

Because we want to show the effectiveness of DINO backbones for video instance segmen-
tation, we want to keep other components of MaskTrack R-CNN as-is as much as possible.
MaskTrack R-CNN generally uses ResNet backbones as feature extractors, which are then
fed into a feature pyramid network. ResNet backbones are fundamentally different to
vision transformers, because they provide multi-scale features. Contrary to that, the scale
and embedding dimension of vision transformer features stay constant throughout. We

17
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Figure 3.1: Visualization of the DINO MaskTrack R-CNN architecture, adapted from [24].

Features are extracted from every third encoder block of a DINO vision trans-
former, on which we perform resampling, linear mapping and normalization.
This forms the DINO backbone.

therefore propose a method to imitate the outputs of a ResNet to adhere to the rest of the
MaskTrack R-CNN architecture with minimal changes.

First, we extract features after every third DINO encoder block. Afterwards, these block
outputs are resampled as in [24] to obtain multi-scale DINO features. The third block
output will be upsampled with a factor of 4. This upsampling is performed via 2x2
transposed convolutions with a stride of 2, a GeLU non-linearity and another 2x2 trans-
posed convolution. Outputs of block six are upsampled with a factor of 2, which is again
performed with a 2x2 transposed convolution with a stride of 2. We keep the feature
output scale of block nine as-is and downsample the output of block twelve with 2x2 max
pooling with a stride of 2. With every ResNet block, the scale of a feature embedding
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would be halved, while the embedding dimensionality is doubled. Vision transformers
provide feature embeddings where the embedding dimension is constant. To match the
ResNet behavior, we use 1x1 convolutions to map to the ResNet-50 embedding dimensions
256, 512, 1024 and 2048.

Lastly, because we have shown empirically that feature normalization is necessary, all
feature embeddings are normalized with group normalization with the default group size
of 32. A depiction of the explained architecture is shown in Figure 3.1.

All these operations in combination form our basic working DINO backbone for MaskTrack
R-CNN. We will refer to the whole architecture as ‘DINO MaskTrack R-CNN’. Alternate
design choices will be explored in Chapter 4.

3.2 Optical-Flow-Guided Video Instance Segmentation

We introduce optical flow in video instance segmentation to achieve two goals: on one
hand, the testing procedure will be sped up, while model performance will be improved
in terms of accuracy on the other hand.

If we know where an object instance is located in one frame and also know the movement
between frames, we can calculate where it moved to. This idea can be exploited to
achieve the first goal. We modify the tracking branch of MaskTrack R-CNN by using
flow propagation as an additional cue in the testing procedure. This idea is based on
[43], where segmentation masks computed with Mask R-CNN are propagated into later
frames. However, that work dealt with the problem of semantic instance segmentation
and therefore reported performance on the Cityscapes dataset among others.

More specifically, we start by computing segmentation masks, bounding boxes, prediction
confidence and class labels with the Mask R-CNN portion of MaskTrack R-CNN for the
first frame and repeat this procedure for every frame in a specified interval. For every
intermittent frame, we compute its dense optical flow between the previous frame and
propagate all hypotheses of the previous frame into the current one. This is performed
by a forward warping of the hypothesis segmentation masks with the computed dense
optical flows. Additionally, we recompute the bounding boxes and copy the previously
computed prediction confidence, class and instance labels. We will refer to this method as
‘FlowProp’. Figure 3.2 shows this setup when the prediction frequency is 2. FlowProp will
certainly lead to a degradation in segmentation performance, but speed up the testing
process.
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Figure 3.2: Visualization of the FlowProp method. We start by predicting instances
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instance masks from the previous frame are forward warped with the optical
flow between the two frames.
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Instead of speeding up VIS, we can also use optical flow to improve the tracking per-
formance, as it can be a suitable cue for instance detection. We will output predictions
with the Mask R-CNN parts of MaskTrack R-CNN for every frame to obtain accurate
segmentation masks. Tracking is supported by using the optical flow between the current
frame and the previous frame. With this, we forward warp the segmentation masks of the
previous frames hypotheses and calculate the overlap between the warped segmentation
mask and the predicted ones. If the mask overlap is high, the objects should be of the
same instance. We extend the regular MaskTrack R-CNN tracker with this additional cue

vi(n) = logp;(n) + alogs; + BIoU (b;, by) + v6(cs, cn)

+ e sloU(mj, flowp.i(my)) .

where flow,.; denotes the optical flow between the current frame and the previous frame
and m; and m,, represent the segmentation masks of the current and previous frame
respectfully, while e controls the influence of the cue.

We adapt the soft IoU calculation from [3] over the mask pixels p, which is:

> mi(p)mn(p)
>_pMi(p) + mn(p) — mi(p)mn(p)

(3.2)

sloU(mj, my,) =

We refer to this optical flow concept as ‘MapMatch’ and visualize it in Figure 3.3.
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4 Experiments

4.1 Implementation

We base our implementation on the MMTracking toolbox [28], which is a part of the
OpenMMLab project and designed explicitly for video perception problems. This toolbox
was chosen because it includes the MaskTrack R-CNN [42] baseline implementation,
the YouTube-VIS datasets [42] and evaluation methods, unlike the popular Detectron2
framework [39].

We extend the framework with a custom DINO backbone that is based on the official
DINO vision transformer implementation. Dense optical flow is computed with the high-
resolution pretraining of the original implementation of Flow1D [41], where the extracted
flow map dimensions match the original video resolutions. During evaluation, predictions
will be resampled to the original frame dimensions to calculate the metrics. We perform
forward warping in our optical-flow-guided methods with full resolution flow maps.

Training Setup We mostly follow the original training setup of the official MaskTrack
R-CNN implementation [42]. The methods are trained with a batch size of 8 for 12
epochs. The initial learning rate is 0.00125 with a linear warmup for 500 iterations and
a warm-up ratio of % Learning rate decay is performed with a factor of 10 at epochs 8
and 11. Furthermore, we use the original hyperparameter choices of MaskTrack R-CNN,
which are & = 1, § = 2 and v = 10. During training and validation, we downsample
the original input frames to 640 x 352 pixels. The input dimensions are divisible by 16,
which means that the entire image can be divided into 8 x 8 or 16 x 16 pixel patches.
Otherwise, vision transformers would disregard the remainders of the image. Additionally,
no padding is performed on the inputs. All experiments were performed on a NVIDIA RTX
A6000 (49140MiB) GPU.
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4.2 Datasets

This thesis makes use of the YouTube-VIS 2019 [42] dataset. It is based on the YouTube-
VOS dataset, but it is labeled exhaustively and extended with instance information to
adhere to the video instance segmentation problem.

The 2019 version has 40 classes and consists of approximately 2 900 high-resolution videos,
of which 2 238 belong to the training split and 302 videos comprise the validation dataset.
The test dataset consists of 343 videos. Videos are object- or scene-centric and can feature
(multiple) animate objects like animals or people, as well as inanimate objects such as
skateboards or trains. The datasets consist of video frames that are extracted in an interval
of five frames in a frame rate of 30fps. Figure 4.1 shows some examples.

Figure 4.1: Frames extracted from videos of the YouTube-VIS 2019 dataset [42].

In total 130k object masks from 4800 objects are provided. Ground-truth annotations are
only provided for the training split and hidden for the other splits. Metrics are therefore
calculated on a Codalab server.

Although newer versions of the dataset exist, most works still report on the 2019 version
since it is already an established baseline for the VIS problem. Due to the extensive
computational needs of VIS models, we will, therefore, also focus our experiments to
this version. The original paper reports on the validation and test dataset, but metric
calculation on the test set is no longer possible. Hence we will, just like in other works,
report our results on the validation set only.
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4.3 Metrics

We evaluate our methods on the standard VIS metrics described in more detail below.
Nevertheless, as validation annotations are not provided, performance metrics on the

validation dataset are calculated by uploading the predictions to the Codalab server!.

Average Precision Average precision (AP) is a widely used metric in image instance
segmentation and denotes the area under the precision-recall curve. The precision-recall
curve is calculated over varying detection confidence thresholds. The area under the curve
is computed over 101 recall thresholds, which are 0 to 100% with increments of 1%. The
original COCO metric [25] calculates AP over 10 IoU thresholds between 50% and 95% in
5% increments by averaging the AP scores obtained from the single thresholds.

In video instance segmentation, it is especially important to model and assess the rela-
tionship of the instance representation across frames. A performance metric for VIS must,
therefore, be able to represent such relations. IoU in image instance segmentation would
be normally computed for single images. However, just extracting frames from videos and
treating them as separate entities would defeat the purpose. The standard AP metric must
be, therefore, modified, which was done by redefining the IoU computation as [42]:

T i~ d
_ N
To (i, ) = 2zt O 0 @4.1)
Zt:l |my U my |

In other words, IoU is computed as the overlap between the real instance segmentation
masks mn/,_, and those of the hypotheses m/, _, summed and averaged over all T' frames
of a video. As explained in [42], if the object masks are detected successfully, but the
model fails to track the objects across frames, it will get a low IoU.

The above calculation is limited to 100 hypotheses per video that have the highest detection
confidence. Like in regular COCO evaluation, AP is first computed per category and then
averaged over all categories. In addition to AP, two additional variations are calculated:
AP50 and AP75. These variations report the average precision over single IoU thresholds,
which are 0.5 and 0.75, respectively.

Thttps://codalab.lisn.upsaclay.fr/competitions/6064
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Average Recall Contrary to the AP calculation, average recall (AR) is defined as the
maximum recall we can achieve over a fixed amount of detection hypotheses. While all AP
metrics are calculated over 100 hypotheses per video, AR is reported over two different
fixed numbers of hypotheses. AR1 uses only one highest-scoring hypothesis per video,
while AR10 examines 10 detections. Apart from that, the IoU and recall thresholds are
the same as for AP, and the AR variants are computed per category first and then averaged
afterward again.

4.4 Experiments

This chapter describes different experiments and their results in detail. In Section 4.4.1
we will explore different design choices for DINO-based MaskTrack R-CNN backbones.
Section 4.4.2 will show the experiments for our proposed optical-flow-based tracking
concepts, which were described in Section 3.1 and 3.2.

4.4.1 DINO MaskTrack R-CNN

In Chapter 3 we introduce our initial DINO-based backbone for MaskTrack R-CNN by
imitating the architecture of the original ResNet-50 backbone. These initial working
baselines are created by defining small datasets consisting of a single video or five videos
of the original training split and ensuring that the model is able to overfit on both of them.
However, the initial design choices might not be best-suited and could be improved upon.
Futhermore, most design choices introduce more learnable parameters and increase model
complexity. Thus, we will explore which modifications are necessary to be able to use
DINO backbones in MaskTrack R-CNN and which additional design choices are beneficial
for the model performance.

The results of all experiments will be reported over two random seeds. Preferably one
would report over a bigger amount of random seeds, but this is not feasible because of the
computational overhead. All models were trained on the training split of the YouTube-VIS
2019 dataset. The AP and AR metrics, which are described in Section 4.3, are reported
on the YouTube-VIS 2019 validation split unless stated otherwise.
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DINO variants The authors of DINO provide different vision transformers that were
trained with their self-supervised training setup, which is explained in Section 2.3. These
pretrained backbones are either using 8 x 8 or 16 x 16 pixel patches and have different
embedding dimensions, which are 384 for the small models and 768 in the base models.
We refer to the small models with ViT-S and to the base models as ViT-B.

We will test out the different pretrained backbone variants to see which are the best per-
forming ones in conjunction with a MaskTrack R-CNN architecture. For this experiments,
we train the models on the whole training dataset, as the difference of architectures
becomes only apparent with a usage of bigger amounts of training data. When using
smaller splits, the results become more similar, which could be also caused by the not fully
deterministic training procedure. While the MaskTrack R-CNN baseline initializes the
Mask R-CNN parts with pretrained weights, we compare the DINO architectures perfor-
mance to training from scratch. The reasoning for this is the mismatch of dimensions for
some of the components, where the pretrained weights cannot be loaded fully. Also the
16 x 16 patch variants might benefit from the pretraining more because it maps the input
image into the same sizes as the original ResNet backbone would. To ensure comparability
even further, we freeze the original ResNet backbone in our experiments. The MaskTrack
R-CNN baseline only froze the first stage of the backbone, which amounts to 225,344
of the 23,508,032 parameters. This corresponds to about 0.96% of the total backbone
parameters. Consequently, the ResNet-50 backbone is mostly trainable in the baseline
setup. Furthermore, we use the original initialization of the ResNet when MaskTrack
R-CNN is trained from scratch. We present our results on the YouTube-VIS 2019 validation
split in Table 4.1.

The results show that the baseline model with a frozen backbone is not able to perform as
well as any of the models that have a DINO vision transformer feature extractor, causing a
loss of AP between approx. 2 and 6% compared to the DINO variants. ViT-S/16 performs
1.33% worse than ViT-S/8 in terms of AP, while ViT-B/16 performs 3.16% worse than
ViT-B/8. The architectures therefore benefit from smaller patch sizes, probably due to
their higher patch granularity, which should lead to more detailed instance segmentations.
ViT-B/16 has 1.43% more AP than ViT-S/16, while the improvements in AP50 is noteably
large (+3.16%) and the improvement in AP75 only minor (+0.4%). In terms of AR1 and
AR10, ViT-B/16 performs better than ViT-B/16 (+1.06% AR1 and 1.99% AR10). However,
when looking at the 8 x 8 patch variants, ViT-B/8 performs 3.26%, 3.22% and 5.07%
better in terms of AP, AP50 and AP75 respectively than ViT-S/8. AR1 and AR10 are also
better (+3.12% and +3.39%). We can therefore see that bigger embedding dimensions
of DINO vision transformers leads to a better performance than their smaller counterparts.
This is probably because of their higher amount of parameters and model complexity,
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Method Arch. AP AP50 AP75 AR1 AR10
MaskTrack R-CNN ResNet-50 0.2481 0.4579 0.2534 0.2722 0.3299
Frozen MaskTrack R-CNN ResNet-50 0.1448 0.3276 0.1218 0.1744 0.2044

: 0.1632 0.3394 0.1349 0.2143 0.2509
ViT-5/16 +0.0039  *0.0124  +0.0007 +0.0059  =0.0132

DINO MaskTrack R-CNN

0.1775 0.3710 0.1389 0.2249 0.2708
+0.0017 *0.0135 +0.0060 +0.0018  =0.0015

0.1765 0.3663 0.1424 0.2173 0.2631
+0.0062 *0.0222  +0.0093 *0.0152  +0.0087

0.2091 0.3985 0.1931 0.2485 0.2970
+0.0069  *0.0231  +0.0001 +0.0043  =0.0061

DINO MaskTrack R-CNN ViT-B/16

DINO MaskTrack R-CNN ViT-S/8

DINO MaskTrack R-CNN ViT-B/8

Table 4.1: MaskTrack R-CNN results for different DINO ViT configurations and baseline
models for comparison on the YouTube-VIS 2019 validation dataset. All back-
bone feature extractors are initialized with pretrained weights, while the rest of
the components are initialized randomly. Best scores of DINO MaskTrack R-
CNN methods are formatted in bold, while second-best scores are underlined.

especially when we keep in mind that the embedding dimensionality will be mapped
to up to 2048 in the backbone later. At a further glance on the results, ViT-B/16 and
ViT-S/8 perform almost similarly well (higher AP, AP50, AR1 and AR10 for ViT-B/16 and
higher AP75 for ViT-S/8). Increasing the embedding dimensionality and decreasing the
patch size lead to similar improvement. To conclude, both an increase in the embedding
dimensionality and decrease of the patch sizes in conjunction cause a significant increase
in performance, making VitB-8 the best performing variant. Nevertheless, the original
MaskTrack R-CNN model still performs 4 to 8% AP better than our proposed MaskTrack
R-CNN derivates with frozen DINO backbones. Compared to the 10% performance loss in
AP that fully freezing the original MaskTrack R-CNN backbone causes, the experiments
hence validate the effectiveness of the self-supervised DINO vision transformer features
for downstream tasks, which are not apparent in the supervised features of the ResNet.

All of the following experiments will be conducted on the MaskTrack R-CNN architecture
that has a DINO ViT-S/8 backbone (later abbreviated as DINO-MT-S/8), because it has
a similar amount of backbone parameters as ResNet-50, performs better than ViT-S/16,
which has the same amount of feature extractor parameters. This will give us the perfor-
mance gain of using 8 x 8 patches, but not the negative effect of longer training times
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that would come with ViT-B/8.

Updown vs. no Resampling Different block outputs of the ResNet provide feature
embeddings in different sizes as a result of the convolutional architecture, which are then
used in a Feature Pyramid Network. We therefore want to see if feature maps in different
resolutions are beneficial for a MaskTrack R-CNN pipeline when using DINO backbones
or if resampling can be omitted. Different vision transformer blocks normally always
have the same size, contrary to a ResNet backbone. We therefore conduct an experiment
where we omit the upsampling/downsampling of the features and use the extracted DINO
features in their original resolutions. The strides are therefore modified to 16 everywhere.
The results are presented in Table 4.2.

Method AP AP50 AP75 AR1 AR10

0.1775 0.3710 0.1389 0.2249 0.2708
+0.0017 *0.0135 *0.0060 +0.0018  =0.0015

0.0272 0.0935 0.0064 0.0382 0.0387
+0.0070  *0.0150  +0.0038 *0.0060  +0.0067

DINO-MT-S/8
DINO-MT-S/8 without resampling

DINO-MT-S/8 with bilinear interpolation 0.1847 0.3896 0.1572 0.2343 0.2783
+0.0204 *0.0299  +0.0349  +0.0135 =0.0174

Table 4.2: Results of DINO ViT-S/8 MaskTrack R-CNN for different resampling config-
urations. Best scores are formatted in bold, while second-best scores are
underlined.

Table 4.2 shows that the model performs poorly when resampling is omitted. It causes
a loss of 15% in AP, which leads to an AP of 2.72% which is extremely bad. 3.4% is
both the score for AR1 and AR10. The model is therefore not able to make even a single
confident prediction, diminishing the usefulness of the backbone. Resampling therefore is
a necessity for DINO backbones in Mask R-CNN architectures. This is probably caused by
the architecture of feature pyramid networks, where the features are inputted into.

As we have seen, resampling is a necessary component for making Mask R-CNN architec-
tures work well with DINO backbones. Resampling the feature embeddings via upcon-
volutions or downconvolutions introduce more learnable parameters for the backbone.
We will test if interpolation, which does not introduce any more trainable parameters
to the backbone, suffices for resampling the feature embeddings to different scales. We
use bilinear interpolation to upsample and downsample the feature embeddings of the
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different block outputs. The output embeddings will have the same size as they had with
the convolution-based resampling method. Table 4.2 shows that bilinear interpolation is
indeed a sufficient replacement for the convolution-based resampling and even performs
slightly better. We achieve a 0.72% increase in AP, 1.86% increase in AP50 and 1.83%
increase in AP75. The AR metrics also show an improvement of 0.94 and 0.75% in AR1
and AR10 respectively. The standard deviation of the results however show noteably more
variance in model performance when using bilinear interpolation compared to the initial
version with up- and downconvolutions. A resampling like in ?? is obviously suitable for
vision-transformer-based backbones, but in case of self-supervised feature extractors that
provide valuable features themselves already, might not the best choice. We expect them
to work better in regular supervised settings where the backbone will be trained fully as
well. Concluding, resampling is anecessary step to make MaskTrack R-CNN work with
DINO feature extractors.

No mapping The outputs of ResNet blocks are differently sized because when downsam-
pling the feature dimension, the embedding dimension is doubled. Vision transformers
however have a constant embedding dimension. We test if a mapping to the ResNet
embedding dimensions is necessary.

Method AP AP50 AP75 AR1 AR10

0.1775 0.3710 0.1389 0.2249 0.2708
+0.0017 *0.0135 +0.0060 *0.0018  =0.0015

0.1620 0.3359 0.1365 0.2052 0.2549
+0.0030  *0.0001 +0.0129  +0.0033  0.0017

DINO-MT-5/8

DINO-MT-S/8 without linear mapping

Table 4.3: Results of DINO ViT-S/8 MaskTrack R-CNN with and without linear mapping.
Best scores are formatted in bold, while second-best scores are underlined.

Table 4.3 shows that ViT-S/8 with linear mapping has a higher AP with +1.55% and
higher AP50 with +3.51%. AP75 is however only slightly better in the version with linear
mapping (+0.25%), while the difference in AR1 and AR10 are again larger (1.97% and
1.59%). Thus MaskTrack R-CNN based archictectures with DINO feature extrators can
work without a linear mapping, but possibly perform better when used because we have
introduced more learnable parameters.
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Block selection Initially, we defined our DINO backbone in a way that used the outputs
of every third encoder output of the vision transformer as done in [24]. In this experiment
we test if the last four block outputs provide more meaningful features for VIS. Table 4.4
shows the results of the block selection experiments. We see that the version using the
last four block outputs performs worse than the original version that uses the DINO
output of every third block. With every encoder block the vision transformer will produce
more semantically meaningful features. However, we suspect that the worse performance
is caused by the diminishing difference between the representations when using the
last encoder blocks. This adds less value to the different outputs and thus to a lower
performance. We also think that the design choices in [24] are carefully chosen and
modifications will not lead to much betterment.

Method AP AP50 AP75 AR1 ARI10

0.1775 0.3710 0.1389 0.2249 0.2708
+0.0017 *0.0135 +0.0060 +0.0018 =0.0015

DINO-MT-5/8

DINO-MT:S/8 with last 4 block outputs ~ 0-1554 0.3337 0.1261 0.2116 0.2563
+0.0125 *+0.0155 *0.0193 *0.0087 =*=0.0123

Table 4.4: Results of DINO ViT-S/8 MaskTrack R-CNN for varying encoder block selections.
Best scores are formatted in bold, while second-best scores are underlined.

Normalization Normalization of features is a crucial step for deep learning architectures,
which leads to the representations of input data to have similar ranges, because otherwise
learning would be harder. We try different popular normalization options of the DINO
block outputs and present the results in Table 4.5.

Introducing no normalization prevents the model from learning and the model loses the
ability to make any confident predictions as a consequence. Because the experiment on
the small dataset consisting of five training videos already did not work, and the ability of
the model, that was trained on the whole training split, to make predictions diminished
completely, we do not report any metrics for this experiment. Batch normalization [22]
barely allows the model to localize the instances in terms of bounding box and class
detection, but fails in segmenting the instances, which causes poor AP and AR performance.
Batch normalization is highly dependent on the batch size and generally works better
with rising batch sizes. Video data, especially if it is high-resolution, cannot be processed
in large batch sizes due to their high computing needs, so batch normalization performs
second worse. Instance normalization [34] actually allows the model to segment instances
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Method Normalization AP AP50 AP75 AR1 AR10
0.1775 0.3710 0.1389 0.2249 0.2708

DINO-MT-5/8 GroupNorm 32 +0.0017 +0.0135 +0.0060 +0.0018 +0.0015
DINO-MTS/8  GroupNorm16 Q002 937°2 00302 02k Yoconr
DINO-MES/8  GroupNorms  G778% QU7 O00T Coons Sanoes
DINO-MT:5/8 LayerNorm 00002 U500 Sovmy Sadwes Soooss
DINO-MTS/8  InstanceNorm 9078 02008 0000 Voone ootss
DINO-MT:S/8 BatchNorm 0.0022 0.0092 0.0000 0.0106 0.0109

+0.0000 +0.0001 +0.0001 +0.0002 =*0.0002

Table 4.5: Results of DINO ViT-S/8 MaskTrack R-CNN for different normalization methods
on the YouTube-VIS 2019 validation dataset. Best scores are formatted in bold,
while second-best scores are underlined.

and performs better than BatchNorm. Layer normalization [2] allows the model to
actually learn valuable features that can be used for the segmentation of instances. Group
normalization in all variants is performing best and the different group size selections do
not lead to large differences in performance, which aligns with the original paper. We
can therefore conclude that feature normalization is absolutely necessary when using
DINO features in Mask R-CNN based archictures as well and group normalization is best
suited in this case. We show that the more granular normalization is, i.e. normalization is
performed over smaller areas, the better the results are.

Input Scale Videos in high-resolution cannot be processed easily due to their need for
extensive computational resources. In Mask Track R-CNN input images are downscaled to
half of high-resolution, i.e. 640 x 360 pixels, such that a computation of those features
is possible in sufficient batch sizes. Smaller input resolutions would speed up training
and inference and it is therefore worth exploring how much the model performance
suffers when downscaling the inputs even further. Table 4.6 shows the results of our input
resolution experiment.

We have tried to test out higher input resolutions as well, but computing time rises
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exponentially, so training a model with 960 x 536 pixels would have taken over 20 days
and was therefore infeasible. Training with an input dimension of 800 x 440 pixels was
feasible, but the model lost the ability to make any confident predictions along proceeding
training epochs.

Method _ Input AP  AP50 AP75 ARl AR10
dimensions
0.1775 0.3710 0.1389 0.2249 0.2708
DINO-MT-5/8 640%352 +£0.0017 +0.0135 +0.0060 =*0.0018 +0.0015
0.1987 0.4011 0.1830 0.2504 0.3015
DINO-MT-5/8 480264 £0.0061 +0.0039 +0.0203 =0.0033 +0.0013
0.1926 0.3985 0.1520 0.2361 0.2797
DINO-MT-5/8 320x176 +£0.0092 +0.0090 +0.0165 =+0.0037 +0.0018
DINO-MT-S/8 9945120 0.2082 0.4152 0.1827 0.2484 0.2903

+0.0074 +0.0030 +0.0200 *+0.0040 =*0.0022

Table 4.6: Results of DINO ViT-S/8 MaskTrack R-CNN for varying input dimension, where
the same input dimension is used during training and validation, on the
YouTube-VIS 2019 dataset. Best scores are formatted in bold, while second-
best scores are underlined.

The experiment results show that the model benefits from smaller input dimensions. The
model with an input dimension of 224 x 120 pixels performs best (+3.07% AP), while
scale 0.375 also leads to an improvement of approximately 2 percent in AP, AR1 and AR10
compared to scale 0.5. The performance difference for AP50 and AP75 is bigger with
approx. 4%. Scale 0.25 still performs better than the original input size of MaskTrack
R-CNN, but worse than scale 0.375. Originally, vision transformers and DINO were trained
with 224 x 224 pixel inputs, which would explain the performance gain when using similar
input dimensions. For the rest, smaller input dimensions will lead to larger neighborhoods
in the patches, which can benefit the detection performance and decrease the segmentation
performance. Scale 0.375 and 0.25 perform similarly well. Scale 0.25 surpasses scale 0.375
in AP and AP50 by 0.95% and 1.41%, while falling behind minimally in AP75 and AR.
Due to the benefit of faster training and inference times and smaller model size, scale 0.25
should be the preferred input scale. Table 4.7 shows that the performance improvement
comes mostly from the change of input dimensions in training. When only lowering the
input dimensions during validation, the versions with scale 0.375 and 0.25 perform much
worse.
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Method _ Input AP AP50 AP75 ARl ARI0
dimensions
0.1775 0.3710 0.1389 0.2249 0.2708
DINO-MT-5/8 640x352 +£0.0017 +0.0135 *0.0060 =*0.0018 +0.0015
0.1817 0.3864 0.1521 0.2269 0.2700
DINO-MT-5/8 480x264 £0.0026 +0.0043 +0.0060 =0.0020  +0.0029
0.1249 0.3078 0.0866 0.1766 0.2040
DINO-MT-5/8 320x176 +£0.0011 +0.0110 +0.0247 =0.0014 +0.0042
DINO-MT-S/8 224%120 0.0659 0.1935 0.0252 0.0986 0.1091

+0.0016 +0.0013 +0.0102 +0.0009 =+0.0001

Table 4.7: Results of DINO ViT-S/8 MaskTrack R-CNN for varying input dimension during
validation on the YouTube-VIS 2019 dataset. During training, the input dimen-
sion is 640 x 352 pixels in all methods. Best scores are formatted in bold, while
second-best scores are underlined.

Pretraining As the original architecture relies on a pretrained Mask R-CNN and [24]
also claims that pretraining always leads to faster convergence, we want to explore how
finetuning on pretrained weights effects the performance. Table 4.8 shows the results
when finetuning pretrained weights and without. Finetuning is shown to be beneficial for
Mask R-CNN-based architectures with DINO backbones as well, even though the pretrained
weights are calculated with architectures without DINO backbones and not all weights are
applicable due to dimension mismatchs in the backbones It causes an increase of almost
4% in AP, 5% in AP50 and 6% in AP75. AR1 is also improved by 3.59% and AR10 by
4.1%. The model performance is therefore significanty increased through pretraining.
These results are in-line with recent research in general and especially with the findings
in [24].

4.4.2 FlowProp and MapMatch

The MaskTrack R-CNN tracking branch favors videos with small motion and instances
with similar appearance due to its design of the testing procedure. However, not every
instance will only have small displacements between frames and they can also change
their appearance severely. To counteract this problem, we propose using optical flow
as guidance in the testing procedure. As described in Chapter 3, we call this method
‘MapMatch’.
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Method AP AP50 AP75 AR1 AR10

0.1775 0.3710 0.1389 0.2249 0.2708
+0.0017 *0.0135 +0.0060 *0.0018  =0.0015

DINO-MT-5/8

DINO-MT-S/8 with pretraining 0.2151 0.4226 0.2006 0.2608 0.3118
+0.0096 *+0.0196 +0.0063 *=0.0032 +0.0015

Table 4.8: Results of DINO ViT-S/8 MaskTrack R-CNN with and without pretrained Mask
R-CNN components besides the backbone. The backbones are initialized with
DINO weights for both. Best scores are formatted in bold, while second-best
scores are underlined.

The other shortcoming of MaskTrack R-CNN is its long inference time. Thus, as presented
in ??, optical flow can be used to speed up the model during testing time, which we will call
"Flow Propagation’. Flow propagation will most certainly lead to a decrease in prediction
accuracy due to non-perfect flow computations. Additionally, if objects disappear and
reappear later, it will not be able to re-detect the instance. However, speedups can be
substantial, so we want to see how much performance loss is to be expected when using
the proposed method.

Oracle flow We compute an upper-bound for the model performance in an oracle exper-
iment. For that, the annotations provide us with ground-truth segmentations, instance
labels and bounding boxes. These will be used instead of the predictions of the other
MaskTrack R-CNN branches. Unfortunately validation annotations are not provided and
we will therefore perform the oracle experiment on a random split of the training data.
This split consists of 302 videos, just as the validation split.

The best-achieveable model performance is calculated with the ground-truth annotations.
To measure the influence of the flow procedure, we configure the model to calculate Mask
R-CNN predictions only on every n-th frame. For the remaining frames we will copy the
predictions of the previous frame and warp them with optical flow to obtain predictions
for the current frame. The more frames skip calculating predictions with Mask R-CNN, the
worse the accuracy should get. In order to validate the effectiveness of introducing flow in
this propagation procedure, we omit segmentation warping with flow by just copying the
predictions of the previous frame for frames where we do not calculate the predictions
with Mask R-CNN. Figure 4.2 shows the results of the procedure with varying prediction
frequencies on the beforementioned training split.
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Oracle Flow
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Figure 4.2: Results of the oracle flow experiment on a training data split. Flow propagation
improves the performance by up to 20 percent.

We observe that the bigger the prediction frequency, the worse the model accuracy. How-
ever, introducing flow indeed causes a better-performing model. The architecture with
flow propagation performs up to 20% better than the version without flow propagation.
When looking at the AR1 metric, we observe that it could not reach 100 percent, even
though we use ground-truth annotations. This is not an error, but in fact can be traced
back to the definition of the metric. AR1 cannot be 1 if there is more than one instance in
a video. If there are more than 10 instances in a video, AR10 will not be 1 either.

FlowProp Returning to FlowProp, now that we have computed the upper performance
bound with the oracle experiment, we want to see the influence on real predictive models.
Just as in Section 4.4.1, we will use our baseline MaskTrack R-CNN with a DINO ViT-S/8
vision transformer backbone. We first report the performance on the training split that
was used in the oracle experiment. Afterwards, we report on the validation dataset. The
results on the training split, as presented in Table 4.9 are naturally lower than in our
oracle experiment, but better than when calculating metrics on the validation set, because
the model cannot generalize well to unseen data.

Table 4.10 shows the results of FlowProp on the validation dataset. When only making
predictions on every second frame and using optical flow to warp the predictions of the
previous frame on every intermittend frame, we only lose 2.15% AP. AP50 and AP75
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Method Prediction  ,p,  spco  AP7S  AR1  AR10
Frequency

0.4050 0.6900 0.4175 0.3630 0.4825

DINO-MT-5/8 1 +£0.0057 +0.0170 +0.0304 =0.0085 +0.0078
DINO-MT:S/8 FlowProp 9 0.3555 0.6630 0.3385 0.3200 0.4290
+£0.0007 +0.0085 +0.0035 +0.0071 =0.0042

DINO-MT.S/8 FlowProp 3 0.3315 0.6465 0.3115 0.3000 0.3990
+£0.0007 +0.0021 +0.0120 +0.0028 +0.0014

MT 0.3065 0.6135 0.2565 0.2770 0.3715
DINO-MT-5/8 FlowProp 4 +£0.0092 +0.0120 +0.0049 +0.0057  =0.0007
DINO-MT:S/8 FlowProp s 0.2850 0.5955 0.2440 0.2625 0.3475
£0.0071 +0.0120 +0.0141 +0.0049 +0.0021

DINO-MT-S/8 FlowProp 6 0.2765 0.5865 0.2335 0.2585 0.3365

+0.0049 *+0.0064 +0.0064 =*0.0078 =+0.0007

Table 4.9: Results of DINO ViT-S/8 MaskTrack FlowProp for varying prediction frequen-
cies on a training split of the YouTube-VIS 2019 dataset. Best scores are
formatted in bold, while second-best scores are underlined.

suffers by 1.42 and 2.41%. We also lose 2.38% AR1 and 3.31% in AR10. This performance
loss was to be expected. With rising prediction frequencies, performance differences get
smaller and smaller. When we compare prediction frequency 6 and the one with frequency
1, we only lose approximately 5-6% in every metric besides AR10. AR10 suffers the most
with 7.65%. If inference speed is only a slight concern, it is advisable to omit predictions
on every second frame. But if speed is the main issue, bigger prediction frequencies can
be of good use. This will however come with a decrease in accuracy.

MapMatch An improvement in accuracy might be achieved with the MapMatch flow
method that is described in Chapter 3. In this method, we add an optical-flow-based cue
in the testing phase to the existing cues of MaskTrack R-CNN. The influence of this cue is
regulated with the hyperparameter . Because a whole hyperparameter search is infeasible,
we base our experiment on the original hyperparameters that were chosen in MaskTrack R-
CNN and combine them with our own MapMatch addition. The original hyperparameters
were 1 for the detection confidence cue, 2 for the IoU cue and 10 for the label consistency
cue. We explore the best hyperparameter choice for ¢ in the following experiment. Again,
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Method Prediction  ,p,  spco  AP7S  AR1  AR10
Frequency

0.1775 0.3710 0.1389 0.2249 0.2708

DINO-MT-5/8 1 +0.0017 +0.0135 =*0.0060 +0.0018 =0.0015
DINO-MT-S/8 FlowProp 9 0.1560 0.3568 0.1148 0.2011 0.2377
+£0.0006 +0.0255 +0.0114 +0.0041 +0.0042

DINO-MT-S/8 FlowProp 3 0.1460 0.3327 0.1116 0.1887 0.2271
+0.0051 +0.0061 +0.0064 =0.0108 +0.0100

DINO-MT-S/8 FlowProp 4 0.1355 0.3327 0.0994 0.1713 0.2127
+£0.0010 +0.0085 +0.0027 *0.0040 +0.0001

DINO-MT-S/8 FlowPro 5 0.1321 0.3197 0.0950 0.1732 0.2041
p +£0.0115 +0.0106 +0.0170 =+0.0016 +0.0030

DINO-MT-S/8 FlowProp 6 0.1264 0.3115 0.0874 0.1653 0.1943

+0.0032 *+0.0105 *0.0098 =*0.0018 =+0.0018

Table 4.10: Results of DINO ViT-S/8 MaskTrack FlowProp for varying prediction frequen-
cies on the YouTube-VIS 2019 validation dataset. Best scores are formatted
in bold, while second-best scores are underlined.

we use the DINO-MT-S/8 model to analyze our custom tracker. Figure 4.3 shows the result
of the experiments for £ between 0 and 15. Detailed values are shown in the Appendix in
Table 6.1

MapMatch leads to an improvement of at least 0.49% in AP and at most 2.42%. All
other metrics improve too, with up to 4.45% in AP50, 3.58% in AP75, 2.15% in AR1
and 2.81% in AR10. We achieve an improvement of at least 0.71% in AP50, 0.91% in
AP75, 0.81% in AR1 and 0.69% in AR10. No matter which ¢ we choose, the performance
improves. MapMatch is therefore an effective approach to improve the performance of
DINO MaskTrack R-CNN through optical flow. The best choice for ¢ lies between 12 and
14. Because ¢ = 13 performs best in AP50, AP75, AR10 and second-best in AR50, we
choose it as the ideal hyperparameter.

MapMatch ablations A whole ablation study where every cue combination is computed
is infeasible. Thus we perform the experiment on binary combinations of the different
cues. Appearance similarity is set per default, as it is the only cue that is used in the
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Figure 4.3: Effects of the hyperparameter choice for ¢ that controls the influence of the
MapMatch cue.
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training procedure. We then combine it with MapMatch and one of the other original
cues. Table 4.11 shows the results of this experiment.

Cues AP AP50 AP75 AR1 ARI10

0.0738 0.1628 0.0524 0.0904 0.1358
+0.0060  *0.0008  +0.0033 +0.0063 *0.0016

0.0980 0.2165 0.0703 0.1193 0.1744
+0.0096  +0.0354 +0.0061 *0.0037  +0.0017

0.0810 0.1749 0.0601 0.0996 0.1412
£0.0021  *0.0043  =0.0001 =0.0052  *0.0085

0.1893 0.3875 0.1619 0.2369 0.2861
+0.0045 *0.0059  +0.0094 +0.0000  =0.0071

0.2017 0.4149 0.1747 0.2448 0.2989
+0.0062  *0.0203  +0.0035 *0.0069  =0.0049

Appearance + Flow
Appearance + Detection + Flow

Appearance + IoU + Flow

Appearance + Label + Flow

Appear. + Det. + IoU + Label + Flow

Table 4.11: Ablation results of DINO ViT-S/8 MaskTrack MapMatch for selected cue com-
binations on the YouTube-VIS 2019 validation dataset. Best scores are for-
matted in bold, while second-best scores are underlined.

We see that appearance similarity and our flow-based cue do not suffice as cues because
that version performs almost 13% AP worse than the version with all cues. AP50 is
affected the most (-25.21%). In comparison, bounding box overlap measured in IoU
only boosts the performance by 0.72% AP, while the detection confidence improves AP
by 2.42%. The most valuable addition is the label consistency cue, which raises AP by
11.55%. Furthermore, it only performs 1.24% AP worse than the version with all cues.
Detection confidence and bounding box overlap therefore only cause a litte improvement.
In conclusion, the combination of all cues accounts for the good performance.

DualFlow Lastly, we would like to combine all the methods we have introduced into one
solution. Table 4.12 shows the influence of each of our introduced flow-based methods
and its combination thereof on our DINO MaskTrack R-CNN architecture.

When we combine our flow-based methods, we can achieve almost the performance of
DINO MaskTrack R-CNN, where we did not use our flow-based guidance. AP is only 0.6%
lower, while AP75, AR1 and AR10 are lower by 0.62%, 0.93% and 1.44% respectively.
AP50 is even 0.71% better with our combined flow guidance. The performance loss that
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Method AP AP50 AP75 AR1 AR10
0.1775 0.3710 0.1389 0.2249 0.2708
DINO-MT-5/8 +£0.0017 +0.0135 +0.0060 +0.0018 =0.0015
DINO-MT.S/8 FlowProp 0.1560 0.3568 0.1148 0.2011 0.2377
£0.0006 +0.0255 +0.0114 +0.0041  +0.0042
DINO-MT-S/8 MapMatch 0.2017 0.4149 0.1747 0.2448 0.2989

+0.0062 +0.0203 *0.0035 *=0.0069 +0.0049

DINO-MT:/8 MapMatch + ElowProp 003 22050 S00) Lmme oo

Table 4.12: Results of DINO ViT-S/8 MaskTrack for different flow-guidance setups on
the YouTube-VIS 2019 validation dataset. Best scores are formatted in bold,
while second-best scores are underlined.

would be caused by the omission of Mask R-CNN predictions on every second frame can
therefore almost be compensated through its combination with the MapMatch method.

Best combinations In Section 4.4.1, we have shown which design choices can be ex-
ploited to make DINO-based backbones work well in a VIS setting. We combine our
findings in two models: one that corresponds to ViT-S and one to ViT-B. Both models
are trained on 8 x 8 patches, extract the features of every third encoder block and use
bilinear interpolation as their resampling method. Additionally, linear mapping is added
and group normalization on the feature embeddings is performed with a group size of 32.
The input dimensions are also lowered to 224 x 120 pixels and the model is finetuned on
Mask R-CNN weights. Moreover, we show the effects of optical-flow-based guidance on
these models. Table 4.13 presents the results of this experiment.

Our goal was to minimize the performance gap between our proposed DINO MaskTrack R-
CNN architecture and the baseline MaskTrack R-CNN architecture. While we can not match
the performance of the original baseline, the performance difference is only approximately
5% in AP for both variants that use optical-flow-guidance in form of MapMatch. The
difference between DINO MaskTrack R-CNN Base and Small is only 0.5% in AP, 0.9% in
AP50, 1.8% in AP75, 1.2% in AR1 and 1% in AP10. However, DINO MaskTrack R-CNN
has approximately 40% less trainable parameters than the baseline architecture.
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Method AP AP50 AP75 ARl  AR10
MaskTrack R-CNN 0.303 0.511 0.326 0.310 0.355
DINO-MT:S/8 MapMatch 0.225 0436 0211 0.259 0.305

+0.003 +0.009 +0.012 +0.012 +0.007

DINO-MT-S/8 MapMatch 0.246 0.459 0.232 0.270 0.329
+0.007 +0.001 +0.027 +0.013 +0.014

DINO-MT-B//8 MapMatch 0.242 0.447 0234 0.283 0.327
+0.008 +0.027 +0.007 +0.000 +0.001

DINO-MT-B/8 MapMatch 0.251 0.468 0.250 0.282 0.339
+£0.001  *0.018  *0.024  +0.013  +0.010

Table 4.13: Results of DINO ViT-S/8 and ViT-B/8 MaskTrack MapMatch for the best ar-
chitecture combination (outputs of every third encoder block, resampling via
bilinear interpolation, with linear mapping, trained and evaluated with an input
dimension of 640 x 352 pixels) and initialized with pretrained MaskR-CNN
weights) on the YouTube-VIS 2019 validation dataset. Best scores are for-
matted in bold, while second-best scores are underlined.

4.4.3 Qualitative Results

In this section we analyze the performance of our DINO MaskTrack R-CNN MapMatch
architecture in a qualitative fashion. The original MaskTrack R-CNN baseline mainly
suffered from changes in object appearance and the occlusion of objects [42].

While changes in object appearance can be handled relatively well in our method, occlu-
sions of similar appearing objects still cannot be handled well. In this case, segmentation
masks overflow into each other or the objects are treated as one joint instance, as shown
in b) and d) in Figure 4.4. In the second frame of b) the elephants on the left are treated
as a single instance. In the second frame of d), both apes are also merges into one
detection. The method performance positively stands out in videos with single objects
which have a different appearance than their backgrounds. These can be segmented
and tracked precisely even when motions are large, as shown in a). Our method can
track instances well even if they disappear in some frames, as shown in ¢). However, the
quality of YouTube-VIS videos varies. In blurry videos, the method has a hard time with
segmenting instances accurately. But compared to the baseline method we can observe
that segmentation masks in our method are generally not as detailed. Additionally, the
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method is sometimes not confident in their class detection if objects appear similar to
multiple classes, as shown in e).

Figure 4.4: Examples generated with DINO ViT-S/8 MaskTrack R-CNN MapMatch on the
validation dataset.
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5 Discussion and Future Work

Video instance segmentation presents a fundamental problem for other video-analysis
tasks. However, VIS methods are shown to be very computationally expensive or in do
not perform as well in efforts for speed-up.

In this work, we tried to exploit big pretrained foundational models and their favorable
properties in a VIS setting. Several works have shown that DINO features provide stable
features that can be used as-is in downstream tasks. This motivated us to apply them in
the VIS problem as well. To the best of our knowledge, our proposed DINO MaskTrack
R-CNN is the first architecture that utilizes self-supervised DINO features in the context of
video instance segmentation. Within the course of our experiments, we found out that
certain modifications are necessary for them to work well within foundational architectures
that are designed for object segmentation. As a consequence, we have modeled a DINO-
based backbone for the MaskTrack R-CNN model. To further tackle problems of VIS, we
propose methods that introduce guidance via optical flow in the testing procedure. Our
experiments show that the exploitation of a fundamental concept like optical flow can
improve the tracking performance or speed up the testing process.

Generally, our results show that self-supervised DINO features can work in dense tasks
such as VIS, even though they were not trained on such a task. However, the detection
performance can be still improved and our method cannot compete with current state-
of-the-art methods in terms of accuracy. Still, our findings indicate that this method
could be applied to other feature extractors that provide self-supervised representations in
future work. Throughout our experiments, we only made modifications on the backbone
and tracking head of MaskTrack R-CNN. Nevertheless, improvements could be made by
tweaking the architecture of other components as well, similarly to [24]. Our methods
for flow-guidance are also rather simple and future work in this direction is also possible.
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Method € AP AP50 AP75 AR1 AR10
0.1775 0.3710 0.1389 0.2249 0.2708

DINO-MT-5/8 0 +£0.0017 +0.0135 =*0.0060 =*0.0018 +0.0015
DINO-MT-S/8 MapMatch ;01824 0.3781 0.1480 0.2330 0.2777
+£0.0116 +0.0018 +0.0190 +0.0104 =0.0076

DINO-MT:S/8 MapMatch 5 0.851 03858 0.1522 0.2371 0.2817
+£0.0113  +0.0021 +0.0233 +0.0145 +0.0071

DINO-MT-S/8 MapMatch 3 01871 0.3905 0.1543 0.2382 0.2835
+£0.0127 +0.0018 +0.0224 =0.0220 +0.0087

DINO-MT-S/8 MapMatch 4 01905 0.3998 0.1580 0.2382 0.2866
+£0.0115 +0.0050 +0.0167 =0.0193  =0.0093

DINO-MT-S/8 MapMatch g 01923 0.4006 0.1564 0.2426 0.2882
£0.0096 +0.0076 +0.0213 =0.0196 +0.0048

DINO-MT.S/8 MapMatch ¢ 01974 0.4084 0.1604 0.2442 0.2937
+£0.0085 +0.0019 +0.0202 +0.0137 +0.0050

DINO-MT-S/8 MapMatch 7 0.1989 0.4107 0.1612 0.2417 0.2936
+£0.0111 +0.0064 +0.0164 =0.0144 +0.0079

DINO-MT-S/8 MapMatch g  0.1982 04128 0.1620 0.2382 0.2923
+£0.0081 +0.0159 +0.0103 =0.0068 =0.0036

DINO-MT-S/8 MapMatch o  0.1988 0.4155 0.1606 0.2416 0.2929
+£0.0056 +0.0098 +0.0061 +0.0058 +0.0031

DINO-MT:S/8 MapMatch 1o 01977 04125 0.1635 0.2423 0.2941
£0.0003 +0.0127 +0.0011 =0.0003 +0.0059

DINO-MT-S/8 MapMatch 17 01964 04081 0.1619 0.2440 0.2944
+£0.0017 +0.0218 +0.0042 =0.0036 +0.0049

AT 0.1988 0.4096 0.1658 0.2464 0.2976
DINO-MT-5/8 MapMatch 12 +£0.0013  +0.0169 +0.0066 +0.0007 =0.0066
DINO-MT-S/8 MapMatch 13 0.2017 0.4149 0.1747 0.2448 0.2989
+£0.0062 +0.0203 +0.0035 =0.0069 +0.0049

DINO-MT-S/8 MapMatch 14 01995 04091 0.1717 0.2459 0.2981
+£0.0045 +0.0141 +0.0012 +0.0060 +0.0078

DINO-MT.S/8 MapMatch ;s 01970 0.4007 0.1702 0.2436 0.2956
+£0.0047 +0.0078 +0.0040 =0.0075 +0.0056

Table 6.1: Caption
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