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Abstract

Natural images possess the property of having multiple reoccurences of similar image regions, e. g.
flower petals or repeating window structures on buildings. Exploiting these non-local dependencies
has lead to better performance of traditional and more recent learning-based image super-resolution
algorithms. Current work on attribution analysis investigating the diverse influence of input pixels for
producing accurately super-resolved images, underline the challenges of SR methods to restore missing
high-frequency components and further stresses the importance of non-locality. Motivated by this, we
propose in this thesis a novel attribution prior for Super-Resolution (SR) and integrate it into standard
reconstruction objectives. Firstly, using traditional signal processing methods we extract meaningful
self-similar information from present low-resolution (LR) inputs. Secondly, we compute attribution maps
w.r.t interesting image patches and enforce SR networks to assign higher attributions to corresponding
self-similar regions. Consequently, we conduct rigorous empirical experimentation to validate our method.
Our analysis shows that our novel attribution prior improves existing local and non-local SR models,
specifically on challenging imagery lacking in high-frequency components.

Natürliche Bilder haben die Eigenschaft, dass sie sich mehrfach wiederholende Bildregionen aufweisen,
z.B. Pflanzenblüten oder Fassadenstrukturen an Gebäuden. Die Ausnutzung dieser nicht-lokalen Informa-
tionen hat zu einer verbesserten Genauigkeit traditioneller und neuerer lernbasierter Super-Resolution Al-
gorithmen geführt. Aktuelle Forschung bezüglich der Analyse von Attributionen, die den unterschiedlichen
Einfluss von Eingangspixeln auf die Erzeugung präziser super-aufgelöster Bilder untersuchen, unterstreicht
die Herausforderungen von SR-Methoden zur Wiederherstellung fehlender hochfrequenter Bildkomponen-
ten und betont die Bedeutung von Nicht-Lokalität. Aus diesem Grund führen wird in dieser Arbeit ein
neuartiger Attributionsprior für SR eingeführt und in bestehende Optimierungsfunktionen integriert.
Erstens, mithilfe traditioneller Signalverarbeitungsmethoden werden relevante ähnliche Bildregionen
aus den entsprechenden Eingangsbildern mit geringer Auflösung extrahiert. Zweitens, Attributionen für
interessante Bildbereiche werden berechnet und anschließend werden SR-Netzwerke dazu gezwungen, ähn-
lichen Regionen höhere Attributionen zuzuweisen. Anhand einer Vielzahl an empirischen Experimenten
wird die neue Methode validiert. Analysen zeigen, dass der vorgeschlagene Attributionsprior bestehende
lokale und nicht-lokale SR-Modelle, insbesondere auf anspruchsvollen Bildern, denen hochfrequente
Bildkomponenten fehlen, verbessert.
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1 Introduction

We live in a time in which almost every single person has a pocket-sized device that allows us to take
hundreds of pictures of our vacation trip and share them instantly with our loved ones at home. In
rare cases nowadays, some people would still print their favorite snapshots in a poster-size format but
be rather disappointed about the pixelated and low-quality result. This mostly occurs if we upscale
images by large factors while the original image misses important information, e. g. sharp edges and
patterns.

Consequently, algorithms have been developed to address this problem of inferring missing in-
formation and producing visually pleasing high-resolution images. Besides decorative situations,
Super-Resolution (SR) is an active field of research [19, 81, 67, 14, 41] with vast applications. For
instance, high quality medical imagery is critical for fast and accurate diagnoses, but is costly to
obtain [74]. Producing MRT scans is a lengthy process while results depend highly on equipment
quality or complexity of desired analysis. SR as low-level vision problem has proven to be useful
as established post-processing step [11] intended to reduce screening time and to compensate for
low quality. Besides, modern television sets are capable of displaying ultra-high-definition content
but current TV signals are still widely broadcasted in high-definition or even standard resolution
[34]. For compensating LR signals and recovering missing details, SR methods are applied to upscale
respective content to make use of modern display technology.

Recovering rich information from a low information source is not only a valuable capability but also
desires a deep understanding of the matter at hand. In such a setting, effectively making use of
the accessible information is of crucial importance. An exploitable property of natural images is the
reoccurrence of self-similar image regions. Fig. 1.1 shows representative examples of self-similarity
found in nature, e. g. repeating patters of butterfly wings and building ornaments. It has become a
fundamental concept of capturing and utilizing this property for solving several image restoration
tasks [5, 80, 55, 92, 39, 49, 48]. Moreover, images perceived as high quality are defined by having
sharp contours and textures rich in details. Reconstructing exactly those high-frequency components
constitutes a core challenge in SR.
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Figure 1.1: Examples of self-similarity in natural images. Images taken from DIV2K validation set [1].

1.1 Goals and Contributions

Attribution methods are applied, e. g. in classification tasks [3, 62, 65, 18, 28], as tool for 1) inspect-
ing and finding possible explanations for the behaviour of Convolutional Neural Networks (CNNs)
and 2) as additional terms within objective functions making use of provided explanations to train
better models [58, 56, 28]. Explanation is a delicate term, in fact attribution methods assign values
(attributions) to input features which describe their contribution for predicting a target output value.
In image classification for instance, practitioners interpret attribution values as relative importance
of input pixels for predicting a specific class. Therefore, attribution methods applied at training time
allow for controlling of model behaviour [58, 56, 28].

In Image Restoration (IR) tasks, e. g. SR, modeling non-local dependencies is a well-established
concept in computer vision [5, 45]. Modern Deep Learning (DL) approaches for IR [38, 43, 89,
10, 49, 48] further improve reconstruction results over prior DL methods that do not explicitly
model non-locality [14, 15, 41]. Additionally, recent work on attribution methods for SR implies
that reconstruction performance benefits immensely from non-locality [23]. Still, non-local SR
methods use complex architectural components which are potentially not well-studied compared to
conceptually simpler approaches, while being computationally demanding. Consequently, in this
work we aim at investigating how to enable SR models to explore non-local dependencies, e. g. self-
similar image regions, using computed attribution at training time for guidance. We want to answer
the question if we can improve the reconstruction abilities SR models, specifically of high-frequency
components, by utilizing non-local self-similar input information. For this, we first implement a
pipeline to investigate different existing SR methods. Moreover, we develop a simple yet effective
approach for extracting meaningful self-similar information from LR inputs using non-learning based
methods. Next, we design a novel attribution prior which forces attributions of SR models to be less
localized and assign higher importance to self-similar image regions. Therefore, we structure this
thesis as follows:

• Chapter 2 lays down theoretical aspects of IR, specifically SR methods, and gives an overview
ranging from early learning-based approaches to recent state-of-the-art methods. Besides,
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we present attribution methods and respective fundamentals before concluding our extensive
literature review with illustrating their use and benefits as additional optimization objectives.

• We introduce our novel attribution prior in Chapter 3. We begin by motivating design choices
made for effectively acquiring self-similar information from input data and efficiently adding
attribution computation to our training objective. Lastly, we explain our considerations in
designing our attribution prior to enable exploitation of self-similar information.

• Next, we conduct substantial experiments in Chapter 4 to study effects imposed by our proposed
attribution prior on SR methods. To begin, we establish an evaluation protocol and explain
respective training configurations, datasets and evaluation metrics for our quantitative analy-
ses. We present hyperparameter studies and ablation experiments which aim at empirically
validating our assumptions. We conclude by comparing to state-of-the-art SR methods

• Finally, in Chapter 5 we summarize our proposed attribution prior and critically discuss our
contributions and findings based on previously obtained empirical results.
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2 Background and Related Work

Image Restoration (IR), e. g. removing artefacts such as noise or Gaussian blur from images or
increasing resolution of LR images, is an essential task in computer vision. The following chapter
provides a survey of decisive IR methods focusing predominantly on learning-based approaches
using CNNs. Further, algorithms used in experiments conducted in this work are introduced and the
theoretical concepts for developing the methods presented in Chapter 3 are given.

2.1 Image Restoration

IR problems come across in several different ways in the field of computer vision, but all share a
common objective: Given a degraded image, IR aims at reconstructing the initial image from its
degraded counterpart. In general, this reconstruction process is an ill-posed inverse problem in which
a degraded low-quality image could have been obtained from multiple other high quality images [85].
Depending on the degradation, IR can be categorized into other subtasks: Most prominently, image
denoising aims at recovering the underlying image from its noisy measurement. Similarly, image
deblurring deals with removing image blur and sharpening the apparent image information. Besides
lacking in high-frequency information, images can suffer from high degrees of degradation such as
missing entire image regions. Such occurrences are instances of image inpainting problems. Single
Image Super-Resolution (SISR) attempts to upscale a given LR image to its high-resolution (HR)
correspondence and thereby restore edges and enrich missing textures. Non-blind IR problems
assume that the degradation kernels are known and pre-defined, whereas blind IR attempts to solve
the reconstruction from unknown degradation [71].

Following Eq. (2.1), one can obtain several IR tasks when specifying corresponding degradation
matrices H [85]. In case of image denoising, recovering the clean latent image x from its degraded
observation y can be expressed by Eq. (2.1) where v can be modeled as additive white gaussian noise
with standard deviation σ and degradation matrix H as the identity. Large amounts of different
classical methods, e. g. filtering-based [77, 68] or statistically motivated [66, 59], were applied in the
field of image denoising. Further, we can model Image Deblurring defining H as blurring operator,
or SR when we assume H to be a composite operator of blurring and down-sampling [85].

y = Hx+ v (2.1)
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Taking a Bayesian viewpoint on this problem, modeling a correct image prior is of central importance.
Various methods exploited different image priors including nonlocal self-similarity (NSS) [5, 45, 9]
or sparsity [9, 17]. The proposed denoising algorithm by Buades et al. [5] is based on a simple idea.
Given a query pixel, the algorthim replaces its color value by an average taken over multiple similar
pixels. Naively, one could compute the average over a local neighbourhood centered at the respective
pixel of interest. Buades et al. on the other hand question the assumption that similar image regions
are spatially close to a given pixel. The non-local means algorithm computes the similarity of a
window around each pixel and performs a weighted summation.

NL u(p) =
1

C(p)

∫︂
w(p, q)u(q) dq (2.2)

w(p, q) =
1

C(p)
e

−D(N(p),N(q))

h2 (2.3)

In Eq. (2.2) D is the Euclidean distance between the image neighbourhoods N centered the pixels p
and q, w is the similarity function defining the weights and C(p) is the normalization factor. The
weights in Eq. (2.3) are computed by applying the exponential function with parameter h deciding
the degree of weight decay.

More recently, as in almost every vision-related task, DL-based methods dominate this field of research
and set new state-of-the-arts in terms of performance and capabilities. Early CNN-based methods
[79, 46, 84] rely on shallow network architectures with commonly used components and concepts
like Batch Normalization (BN) [31] and residual learning [26]. In a discriminative setup, Zhang et
al. [84] use a CNN for learning a model which separates the noise from a given degraded image.
Making use of BN and residual learning, the authors leverage on the capacity and flexibility for
exploiting image characteristics of CNNs to design a strong denoiser. Nevertheless, basic principles
such as non-locality [5] or sparsity [17] remain inspirational and are being applied to latest neural
network approaches [43, 89, 80] to further advance research.

2.1.1 Single Image Super-Resolution

Experiments in this work will be conducted under the framework of SISR. Therefore, at this point
a more in-depth literature review relating to learning-based methods will be presented. SISR is a
low-level computer vision problem which aims at reconstructing missing high-frequent information,
e. g. edges and textures, from a single degraded LR image while simultaneously increasing spatial
resolution. In the past, several classical methods have been introduced [19, 7, 81, 24, 67, 50],
but quickly, given the rise of DL, the focus of SISR research shifted towards DL-based approaches.
Initially, pioneering works like [14, 33, 15] achieved first promising results in learning a mapping
in end-to-end fashion between LR and HR data pairs, but also generative models (e. g. Generative
Adversarial Networks (GANs)[22]) have been more prominent in recent works [37, 73]. In context
of this work, it is important to categorize mainly two distinct bodies of work within the IR literature.
Earlier and less advanced methods can be considered as locally operating approaches due to restricted
usage of receptive fiel. Handling complex global or long-range information requires an increased
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receptive field size which most later methods achieve by either building deeper architectures [61,
41] or including attention modules [70, 88, 89, 10, 91, 49, 48]. These advanced networks can be
classified as non-local operating methods.

Early Methods In an early work, Dong et al. [14] use a three-layered CNN to refine a previously
upsampled image using traditional methods (e. g. bicubic interpolation). Thus, as the complicated
interpolation step has been already performed, the difficulty reduces to learning a refining function
between the upsampled LR image and its HR target. Since then, several follow-ups build on this
relative simple approach and introduce more complex architectures. Contrary to [14], Kim et al. [33]
use the popular VGG [63] architecture to learn a residual image instead of a direct mapping. Moreover,
[15] introduces the idea of spatial up- and downscaling of learned feature maps to CNN-based SISR
methods. This projection into low dimensional space allows for real-time capable SISR performance.
On the foundation laid by these early approaches, the research community pushed performance and
complexity of learning-based methods further ahead in the last years. Several works introduced
novel concepts for improving SISR focusing on network design, e. g. residual learning [36, 41, 2],
dense connections [69, 90] or back-projection [25]. Others investigated upsampling methods [15,
61] or learning strategies [32, 37, 20, 6, 60].

Local Methods Follow-up methods to [14, 15, 33] focus further on signal flow through the
network. Tong et al. [69] introduce dense skip connections into a deep network for SISR. In contrast
to ResNets [26], feature maps are concatenated instead of directly summed. Feature maps inside
the proposed network capture therefore information of all preceding convolutional layers. Reusing
information from previous layers forces the current layer to learn complementary information, thus
avoiding redundancy. Their work shows that fusing feature information at different levels boosts
reconstruction performance. Combining ReLU activation functions [53] and deconvolutional layers
with their proposed densely connected convolutional blocks results in a simple yet powerful network.
Building on this, Zhang et al. [90] combine principles of residual learning and densely connected
convolutions to effectively propagate hierarchical features to obtain strong SISR performance. First,
a shallow network extracts initial features which are further processed by several residual dense
blocks (RDBs). Within their proposed RDB consisting of several dense convolutions, each output of
a convolutional layer is concatenated with the respective input before being fed to the subsequent
convolutional operator. Additionally, a local residual connection passes the output of previous RDBs
forward to the current unit’s output resulting in a contiguous memory mechanism. This mechanism
is realized by fusing the state of a current RDB with preceding states. Moreover, global residual
connections fuse shallow features with hierarchical features obtained by RDBs before passing through
the final upsampling layers of the network. In contrast to [69], local residual learning facilitates
flow of information and gradients through the network, while global residual learning promotes
extraction of global features. An interesting modification to the network architecture in comparison
to other vision-related fields is introduced by Lim et al. [41]. They remove BN layer, similar to
[52, 41] from residual blocks [26], which leads to a significant improvement of SISR performance
while reducing overall memory consumption. Their proposed residual block therefore consists of two

12



Co
nv

Co
nv

Re
LU +

Co
nv

Re
sB
lo
ck

Re
sB
lo
ck

Co
nv

Co
nv

U
ps
am

pl
e

+
…

Residual Block EDSR Architecture

Figure 2.1: Visualization of EDSR network architecture. EDSR consists of several residual blocks
stacked to a deep network. First convolutional layer extracts shallow features from
RGB LR input. A global residual connection propagates shallow features to the end of
the network. The upsampling module and a final convolutional layer outputs the final
SR result. The proposed residual block contains two convolutional layers and a ReLU
non-linearity.

convolutional layers and a ReLU non-linearity. Lastly, the input is forwarded by a residual connection
and summed with the output. Besides, Lim et al. do not reduce spatial resolution of learnt features,
thus reducing the memory consumption by removing BN allows the authors to build a deep network
architecture. We visualize their proposed architecture in Fig. 2.1. Their proposed network EDSR sets
a new state-of-the-art on several SR benchmarks. In addition to the single-scale approach, Lim et al.
also introduce a multi-scale model in which most parameters are shared across different scales. Only
pre-processing and final upscaling modules are scale-specific. This simple yet effective EDSR method
remains up until today one of the most cited works in SISR literature and deals as a widely used
baseline [92, 27, 78].

Non-local Methods In general, modeling long-range dependencies through attention mechanisms
[70] has been greatly beneficial for improving the performance of deep models for computer vision
tasks. The following described works show a brief overview of current state-of-the-art SISR methods
involving different types of attentionmodules. Zhang et al. [88] propose a deep channel-wise attention
network (RCAN) for SISR, which in contrast to previous methods adaptively rescales feature maps
based on inter-dependencies in channel dimension. Treating features in channel dimension equally
leads to repeated computation of low-frequency information, therefore proposed novel channel-wise
attention scheme improves the representational power of the network. LR input images contain
abundant low-frequency but valuable high-frequency information. Convolutional layers cannot exploit
contextual information outside of their relatively local receptive field, thus channel-wise attention
aggregates global information and scales feature channels accordingly. Aggregation is performed by
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global average pooling (see Eq. (2.4)) resulting into channel-wise statistics z ∈ RC .

zc = HGP (xc) =
1

H ∗W

H∑︂
i=1

W∑︂
j=1

xc(i, j) (2.4)

For obtaining final channel statistics s, a gating mechanism containing learnable parameters WD and
WU , a ReLU non-linearity δ(·) [53] and a sigmoid function f(·) is applied before rescaling feature
maps. Index c denotes respective channel dimension.

s = f(WDδ(WDz)) (2.5)
x̂c = sc · xc (2.6)

The proposed method RCAN further employs residual learning with short and long skip connections
for efficient feature propagation. Similar to [88], Dai et al. [10] investigate feature correlations in
intermediate layers to enhance the network’s representational capability rather than designing deeper
and/or wider network architectures for SISR. Focusing on second-order statistics, their attention
mechanism adaptively learns feature inter-dependencies, thus effectively capturing long-distance
information. Dai et al. compute channel-wise statistics for rescaling feature maps, but instead of
first-order statistics, Dai et al. apply covariance normalization of given input features. Normalized
features characterize channel-wise correlation. Final channel statistics are obtained by using the
gating mechanism proposed by [88]. Zhao et al. [91] develop an efficient architecture for SISR by
proposing a novel pixel attention mechanism which produces attention coefficients for every pixel.
pixel attention is added to the non-linear mapping and upsampling part of the network where it
replaces pooling operations. pixel attention can be added to any SISR model but ablations with
deeper networks show (> 50 layers) that training becomes more difficult which makes the pixel
attention scheme useful for small networks. In contrast to channel attention [88, 10], pixel attention
generates C × H × W attention maps by using a single 1 × 1 convolutional layer and a sigmoid
function. Input features are then multiplied by obtained attention maps. pixel attention is added
to the basic building block of proposed Pixel Attention Network (PAN) architecture, which consists
of two convolutional branches, where one branch is equipped with pixel attention. The outputs of
those two branches are concatenated and summed with the initial input propagated by a residual
connection.

As mentioned previously, NSS is a well-studied and effective approach in IR problems. Zhang et
al. [89] point out issues with previous CNN-based methods to IR: IR methods are restricted by local
convolutional operations and limited in their distinctive ability due to equal treatment of spatial and
channel-wise features, which has been investigated by more recent work [88, 10, 91]. The proposed
RNAN architecture addresses described issues by introducing local and non-local attention blocks to
capture long-range dependencies. More concretely, the authors propose trunk and mask branches in
each attention block, where hierarchical features are extracted by the trunk branch and adaptively
rescaled by the mask branch. The trunk branch consists of local convolutional layers without BN,
similar to [41]. Within the mask branch, features are extracted by large-strided convolutions and up-
and downsampled by deconvolutions. Additionally, obtained features are passed through non-local
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blocks [72] for producing attention maps for feature scaling. Residual connections are included
between mask and trunk branches to simplify training. The final model is not only applied to SISR but
shows strong performance on other IR tasks, e. g. color image and greyscale denoising. In contrast to
existing methods, Zhou et al. [92] exploit self-similarity properties of natural images by looking at one
sample but on different scales. Similar to [55], this work explores the cross-scale patch reoccurrence
by searching for k-nearest neighbouring patches to the query patch in downsampled LR versions of
the same input image. Using those additional cross-scale LR/HR pairs enriches intermediate features.
The proposed module is incorporated into the EDSR architecture and boosts SR performance across
most of the commonly used benchmarks. Moreover, Mei et al. [49] extend the idea of non-local
attention by including cross-scale dependencies between LR features and HR patches within the
same feature map. A self-exemplar mining cell combines local, in-scale non-local [10] and cross-scale
non-local feature correlations for generating rich feature representations. Cross-scale non-local
attention computes pixel correlation between LR patches and larger-scale patches in LR images. The
proposed network architecture leverages several self-exemplar mining blocks in recurrent manner
and fuses resulting feature maps using a projection unit inspired by the back-projection algorithm
in [25]. A sparse non-local attention module is proposed by [48], which included into previous
baselines such as EDSR [41], sets new state-of-the-art results for SR. The sparsity constraint enforces
a higher focus on correlated and informative regions, achieved by applying non-local operations on
feature pixels previously grouped by locality sensitive hashing (LSH) [21]. LSH projects vectors onto
spherical hyper-spheres and assigns hash codes. If two vectors have a small angular distance, they
are assigned with high certainty into the same has bucket by LSH. Afterwards, non-local attention
is applied only on pixel-wise feature vectors sharing the same hash code. To mitigate unbalanced
bucketing and incorrect hashing, multiple rounds of LSH are performed and the union of all results
is taken. This novel attention module can be inserted in existing architectures and shows consistent
improvement on several benchmarks.

2.1.2 Loss Functions

The presented methods are discriminative models which can be trained with a variety of loss functions.
The most frequently used cost functions are simple ℓ1 and squared ℓ2 (MSE) norms. The ℓ2 loss is the
defacto standard loss in machine learning for a diverse set of problems ranging from low-level vision
(denoising, deblurring, SISR) to high-level vision problems, e. g. classification and object detection,
given its convenient properties of being convex and differentiable. However, it is widely accepted
that ℓ2 and Peak Signal to Noise Ratio (PSNR) metric do not coincide well with perceptual quality
assessed by humans [86]. Several works in the past years showed empirical results indicating that ℓ1
loss function leads to less blurry results and sharper details compared to ℓ2 loss, thus improving IR
performances in contrast to methods trained with regular ℓ2 loss. A central problem of these per-pixel
loss formulations remains that humans quantify perceptual image quality based on more defining
image regions such as faces, but neglect structures in the background. Per-pixel loss functions
do not weigh individual pixels according to image quality perceived by humans. Therefore, more
investigations into learnable loss functions have been conducted focusing more on perceptual image
quality [32, 37, 20, 6, 60] and also introducing generative models for IR problems. The seminal work
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by [32] proposed a perceptual loss term based on features extracted from a pre-trained VGG network
for style transfer, but also investigated SISR. The actual loss is computed as the ℓ2 distance between
features extracted from different layers. Additional weighting between extracted features introduce
again new hyperparameters. For instance, [32] shows worse performance on standard IR metrics
(PSNR and SSIM) in comparison to models optimized with per-pixel losses, but the produced images
look perceptually more appealing. Based on this, several works further investigated combining
per-pixel losses with perceptual losses or applying GANs to IR problems. Additionally, Sajjadi et
al. [60] combine four different loss terms to a single objective function and investigate different
combinations and their respective effects on SISR results. Next to ℓ2 pixel-wise and perceptual loss
terms, they investigate additional style loss terms which represents correlations between features and
adversarial losses. Adversarial loss terms train a generative network to learn a latent representation.
A discriminative network tries to differentiate between a real image and a drawn sample from the
latent representations [22]. EnhanceNet trained with ℓ2 loss alone achieves best results in terms of
PSNR, but training with a combination between perceptual, style and adversarial loss terms leads to
visually more pleasing super-resolved imagery.

2.2 Attribution Methods

Attribution methods ease the understanding of information flow through neural networks and help at
closing the gap between further increasing model performance and providing a grasp on interpreting
model predictions. In general, attribution maps symbolize feature importance for making the final
prediction. In Fig. 2.2 several attribution methods are visualized, indicating pixel importance for
predicting a centered reference patch. Having a deeper knowledge on how neural networks come up
with specific predictions will not only push research ahead, but will further boost applicability in
critical areas like medical fields. Ideally, practitioners will be given the tools needed to assess model
predictions and understand possible misbehaviour. Attribution methods can be categorized roughly
into perturbation-based and gradient-based methods. Perturbation-based methods constantly add
disturbances to input data and measure occurring changes in the final prediction. This makes them
computationally inefficient as each perturbation requires a respective forward pass and are as a
consequence inappropriate as underlying method for including into the training process. Following
section gives a brief overview of gradient-based attribution methods.

Saliency Maps Simonyan et al. [62] investigate in their work visualization techniques for image
classification CNNs trained on ImageNet [12] dataset. On the one hand, a learnt classification model
can generate an image which maximizes the network’s classification score for a given class. The
procedure is similar to training the model but instead of optimizing the network’s weights, the
optimization takes place w.r.t the input image. The other contribution describes the general idea of
visualizing and ranking each pixel in the input image based on its influence towards the classification
decision, which in their work simply transfers to computing the gradients w.r.t the input image. Here,
one can either decide to visualize the absolute gradient values or show both positive and negative
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(a) SR with PoI (b) Saliency (c) I× G (d) IG

Figure 2.2: Visualization of saliency maps, Input× Gradient (I*G), and Integrated Gradients (IG) on
three randmoly selected samples taken from HardCases testset [23].

values to further highlight positive and negative contributions. The magnitudes of obtained saliency
maps therefore point at those pixels which need to be changed the least to affect the classification
score the most which the authors intuitively interpret as importance. However, follow-up work [65]
showed that gradients do not exactly correspond to importance, e.g. because of saturation. When
saturation occurs, even important features can be assigned to have zero attribution.

G =
δSc(I)

δI
(2.7)

Input×Gradient Baehrens et al. [3] investigate neural network decisions by computing the gradient
of the classification score w.r.t. to the input image, which is similar to previously described saliency
maps. Besides, the actual input to the neural network is multiplied with the respective gradient. This
sharpens edges and delivers visually more appealing results. As the gradient indicates the importance
of each feature dimension, the input rather shows how strongly a certain feature is present in the
image. Therefore, assigned attribution values are high only if features are considered important
for the output and its input values are high enough. The downside to this is that image areas with
low brightness or even black pixels will always have low or no attribution at all. Furthermore, the
saturation problem can occur, where given changes in the input do not result into substantial changes
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of the output.

I ∗ G = I ∗ δfθ(I)

δI
(2.8)

Integrated Gradients A challenge in computing such attribution maps is to correctly identify,
whether apparent mistakes stem from the model itself or are results of ambiguities introduced by
a faulty attribution method. To compensate for misbehaviour of attribution methods and overall
difficulty in evaluating attribution maps, Sundararajan et al. [65] take a step back and suggest
axioms which attribution methods should suffice. Further, the authors propose the idea of calculating
gradients w.r.t to a baseline x′. The baseline function gradually interpolates between an image
containing no relevant information, e. g. an image initialized with all values set to 0, and the actual
input image to which the attribution is intended to be computed. The absence of information and its
steady increase should ideally result in correctly attributed pixels.

IGi(x) ::= (xi − x′i)×
∫︂ 1

α=0

δF (x′ + α× (x− x′))

δxi
dα (2.9)

The axiom of sensitivity describes that for every input and baseline that differ in one feature but with
different predictions, the varying feature should be assigned a non-zero attribution value. Secondly,
the attribution method should be implementation invariant, meaning that for two functionally equiv-
alent networks their attributions should be equal even if the networks are implemented differently.
IG is characterized as a high-quality attribution method as it satisfies defined axioms. Note, above
mentioned efficient attribution methods do not satisfy all axioms necessarily, therefore can be seen as
lower quality methods. IG has a high demand in computational resources as solving the path integral
over the baseline function requires several backward passes. This makes it unpractical in the context
of attribution priors [28]. Correctly identifying a valid baseline turns out to be not as trivial as one
would think, e. g. a black image as baseline leads to the attribution method neglecting black pixels.
The choice of the correct baseline image remains a critical hyperparameter and is application-specific
[23].

Expected Gradients The computational limitation of IG is addressed by the work of Erion et
al. [18] which reformulates IG as an expectation. Instead of computing the integral using several
interpolation steps, [18] propose to sample a reference image along the path and evaluate IG based
solely on this drawn sample. Similar to batch gradient descent, where exact gradients of the cost
functions are approximated over multiple iterations, the true value of IG will also be approximated
over all training steps. Empirically, [18] shows that as much as one sample drawn per mini-batch
already suffices, but critically speaking, Expected Gradients (EG) does not represent an axiomatic
attribution method and follow-up work [28] shows EG does not achieve attribution quality compatible
to axiomatic feature attributions using only one reference sample.
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Fast Axiomatic Attributions Hesse et al. [28] present a novel axiomatic attribution method, X -
Gradients, which requires only a single forward/backward pass thus enabling efficient training
with attribution priors. Not only is the computational overhead heavily reduced, but also a formal
proof is given that Input × Gradient equals IG for a specific class of neural networks. This class of
neural networks, termed efficiently axiomatically attributable, consists for instance of nonnegativelly
homogeneous neural networks, which can be easily obtained by removing bias terms from the
network’s layers, e. g. AlexNet [35], VGG [63] or ResnNets without BN [26]. For such types of neural
networks, using IG with linear interpolation between the black baseline image and the actual image
is equal to Input × Gradient. Moreover, [28] empirically show that removing bias terms has minor
impact to the accuracy which can be further increased by training with attribution priors employing
X -Gradients as high-quality axiomatic attribution method.

Local Attribution Maps Taking inspiration from previous research done in the field of explaining
neural networks with gradient-based attribution methods, this work by Gu et al. [23] applies a
modified version of IG visualizing the processed input information by SISR methods. Given a patch
of interest (PoI) in the input image, Local Attribution Maps (LAM) mark every pixel which the
networks utilize to predict the HR image from its degraded LR counterpart. As IR typically aims
at restoring high-frequency components, the path integral used in LAM is build on a progressive
blurring path which is obtained by applying Gaussian blurring with different σ-levels. Therefore,
the visualizations produced by LAM align very well with edges and textures present in the image.
Investigating different SISR methods, LAM shows the importance of a large receptive field or non-
locality for better restoration performance. Local operating networks, e. g. EDSR, exploits fewer
pixels for super-resolving the same PoI as in comparison to non-local networks, e. g. RCAN, RNAN or
SAN.

2.3 Attribution Priors

Attribution methods are designed to facilitate the interpretation of complex model predictions. It has
been shown [58, 57, 44, 28] that integrating attribution priors into the objective function does not
only improve model predictions but can also mitigate undesired biases. It has become more visible in
recent years, e. g. in natural language processing (NLP), that machine learning models are prone
towards learning biases present in the training data. As a result, research on fairness of machine
learning models became more prominent. For counteracting these biases, e. g. towards minorities
or gender, most researchers introduce more data [13, 8] or apply adversarial training techniques
[64]. But these approaches either require additional data, which is costly, or introduce a trade-off
between performance and fairness. Consequently, attribution priors have the ability to address
this issue by injecting auxiliary supervisory signals at training time and prior knowledge based on
model explanations. The following section will give a selective overview of effectively incorporated
attribution methods into the objective functions and the resulting change in model behaviour.
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Right for the Right Reasons Based on the assumption that gradient-based explanations reliably
describe underlying behaviour of machine learning models, Ross et al. [58] seek to constrain attri-
butions to match domain knowledge. If explanations and auxiliary domain knowledge match, the
predictions should not only be correct, but right for the right reasons. Restrictions on explanations
can be achieved by enforcing gradient values in relevant regions to be large or, alternatively, to be
small in irrelevant regions. Ross et al. construct a binary annotation matrix A which indicates the
relevance of dimension d and apply the L2-penalty on irrelevant gradient regions masked by A.

L(θ, x, y, A) =

N∑︂
n=1

K∑︂
k=1

−ynk log(ŷnk)⏞ ⏟⏟ ⏞
Right Answers

+λ1

N∑︂
n=1

D∑︂
d=1

(︄
And

δ

δxnd

K∑︂
k=1

log(ŷnk)

)︄2

⏞ ⏟⏟ ⏞
Right Reasons

(2.10)

This gradient constraint is added to the regular cross-entropy loss and weighted by hyperparameter
λ1 deciding its strength. The annotation matrix A is obtained in this case via expert knowledge, but
auxiliary information is not always at hand. Further, the authors propose to learn an ensemble of
models, where at each instance, A is changed to produce accurate models but with varying right
reasons. Nonetheless, domain experts are still needed in this pipeline to examine which reasons are
the best.

Input Gradient Regularization In this follow-up work by Ross et al. [57], input gradient regu-
larization is not only used with the idea in mind to improve model performance based on their
attributions, but also to strengthen models’ robustness and mitigate the effects of adversarial attacks.
The authors hypothesize, that training models to have smooth and small gradient values improves
robustness towards adversarial attacks, more specifically to transferred attacks, while making models
interpretable. In contrast to [58], a simple L2-penalty is applied to the gradient computed w.r.t the
input, similar to double-backpropagation proposed by [16]. Meaning, given slight changes in the
input, the KL divergence between predictions and labels will not change considerably. Interestingly,
training with gradient regularization surpasses adversarial training in terms of robustness to attacks
and both techniques show complementary effects which further intensifies model robustness. This is
strictly speaking not considered as an attribution prior, but can be incorporated into this framework.

argmin
θ

CE(y, ŷ) + λ∥∇xCE(y, ŷ)∥22 (2.11)

Feature Attribution on Text Classification As stated in the introductory paragraph, biases towards
ethnicity, religion or gender is an alarming fact in NLP. Liu et al. [44] address this issue by adding
L2 penalty of IG attributions to the objective function. To impose model fairness, a target attribution
value of 0 is assigned to keywords relating to protected groups. Additionally, in scarce training setups
where there are only small sets of training data available, assigning positive attributions to toxic
keywords can improve performance in toxicity classification. The attribution objective forces models
to focus more on context than on the simple presence of keywords. Therefore, models trained with
this method show similar or even better performance in toxic comment classification while improving
fairness metrics.
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Contextual Decomposition Explanation Penalization Rieger et al. [56] stress that for attribution
priors to be effective, applied methods must provide insights and further suggest respective actions.
Their proposed attribution method is based on contextual decomposition [51]. In contrast to other
attribution methods, contextual decomposition [51] allows for grouping of feature importance scores
which captures valuable interactions. Similar to [58], Rieger et al. incorporate auxiliary domain
knowledge to enforce classification networks to derive to the correct predictions but with right
reasoning by penalizing wrong explanations. For instance, Rieger et al. apply their proposed method
on skin cancer classification where the dataset is biased towards objects present in the image. Benign
images show not only the skin lesion but also parts of band-aids which the network learns to recognize.
Contextual Decomposition Explanation Penalization mitigates this problem by assigning penalties on
features based on expert knowledge.
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3 Method

The succeeding chapter presents the methods and concepts developed in this work. To begin with, we
show an overview of our SISR pipeline for training, evaluating, and analyzing existing SISR methods.
Next, we will elaborate on how self-similar image regions are obtained straightforwardly without
explicit learning. Finally, we propose a novel attribution prior for SISR, designed with the idea in
mind to exploit self-similarity properties of natural images by steering attribution maps towards
those regions. Throughout this chapter, the method will be kept general. Implementation details
and hyperparameter selection are stated in Chapter 4.

3.1 Overview

Starting from state-of-the-art methods for SISR, our pipeline adds only auxiliary components at
training time to enable training of SISR networks with attribution priors. For this reason, we design
a framework in which different IR methods can be interchangeably included. We visualize our
framework in Fig. 3.1. The visualized LR image in Fig. 3.1 shows a repeating grid-like pattern which
has an abundant amount of self-similar patch reoccurrences. Our method aims at training SISR
models which make use of these self-similar regions (SSRs). With attribution maps we get information
about which pixels in the LR input sample contribute significantly to predicting a respective reference
patch. By extending the range of contributing pixels to other self-similar image regions, we aspire to
improve performance of SISR methods.

The first step in our pipeline is to extract reference patches (PoIs) with meaningful SSRs from
LR input images. We use obtained self-similar information of a given training sample as auxiliary
supervisory signal within our non-locality enforcing attribution prior. For this, we design an extractor
module based on classical image processing techniques for finding according patches in a fast and
reliable way. Further, we select an appropriate feature attribution method which allows efficient
computation of attributions w.r.t a selected reference patch. Next, our attribution prior combines
extracted self-similarity information from current training sample with computed attributions. In
general when predicting a reference patch, our proposed attribution prior encourages SISR methods
to exploit corresponding SSRs present in the LR input. Lastly, the newly formulated training objective
is a weighted summation of a standard reconstruction loss term for IR and our proposed attribution
prior.
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Figure 3.1: Overview of pipeline for training SR models with our attribution prior. We obtain the
corresponding super-resolved output SR by passing the LR image through a CNN for
SISR, optimizing standard ℓ1 reconstruction loss. The extractor module produces the
respective self-similarity maps (SSM) and generates appropriate masks. Based on the
proposed PoI, we compute gradients w.r.t the LR image. In our attribution prior loss,
we apply acquired masks to the input gradients and compute standard mean squared
error (MSE) loss between ratio values and their respective targets.

The following sections describe our proposed method in more detail. Note, we use the terms reference
patch and PoI as well as input gradients and attributions interchangeably.

3.2 Selection of Attribution Method

This work is motivated by [23], therefore a critical discussion of their contribution and findings
is needed. In general, Gu et al. perform analyses of DL-based SISR networks aiming to find input
information that highly affects SISR results. [23] investigate a large variety of SISR models of
different technical difficulty. Based on their proposed LAM visualization and empirical quantification
with their proposed Diffusion Index (DI) metric, the authors come to the conclusion that involving
more input pixels can contribute to better SR performance. This observation aligns nicely with
recent state-of-the-art methods [43, 88, 89, 10, 91, 49, 48, 92, 78] exploiting wide range of input
pixels, visualized by LAM and empirically validated by larger DI scores compared to prior local
methods [41, 14, 15]. LAM is designed to visualize involved input pixels that effectively contribute
to reconstructing local regions in the output image indicated by nonzero gradient values. We will
briefly revisit the most important aspects of their proposed attribution method. In contrast to image
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classification where attributions are computed w.r.t predicted label probabilities, in SISR, or IR in
general, outputs of such networks are pixel intensities. Gu et al. propose a modified version of
IG based on a Gaussian blur baseline, omitting standard black baseline proposed by [65], and a
progressive blurring path function rather than a linear interpolation. IG attempts at explaining
model predictions relative to a baseline image with lack in relevant information. Instead of using
standard IG and raw pixel intensities, Gu et al. use the blurred baseline to represent the absence
of high-frequency components in context of SISR. While these are all reasonable assumptions and
modifications, there are as well some downsides. As a consequence, the method is biased to edges,
textures, and repeating patterns. Moreover, Gu et al. compute the first image derivative of the SR
model output before computing input gradients w.r.t a local patch which further stresses this bias.
Pixels contributing at restoring high-frequency components are predominantly highlighted while
neglecting other information present in the reference region, e. g. low-frequency information, color,
or brightness.

Moreover, as [23] relies on IG for computing attributions, their method is not applicable in a
comparable setup to ours, e. g. training with attribution priors. LAM performs up to 50 integral
evaluations which equally corresponds to the same number of gradient computations by back-
propagating through the entire network which makes it computationally expensive. Consequently,
we employ input gradients [62] over a local neighbourhood of the predicted super-resolved output
image. Saliency maps require just a single additional backward pass through the network, thus
allowing us to use our proposed attribution prior with moderate increase (factor 2) in training
time. Thus, we compute the gradient w.r.t the raw input sample, meaning we do not categorically
limit our focus on high-frequency components by using additional feature extraction in contrast
to LAM. We also observed when experimenting with I*G that predominantly dark image pixels
will be underrepresented by obtained attribution maps, because of additional weighting with pixel
intensities of input gradients. Fig. 2.2 visualizes the difference between obtained attributions using
plain input gradients, I*G, or IG. In order to avoid exclusion of low intensity pixels, we keep input
gradients without further modifications.

3.3 Self-Similarity Maps

Finding self-similarity is of crucial importance to our approach. We carefully design a filtering process
to ensure selection of reference patches with guaranteed SSRs. We define several characteristics
for choosing the most plausible SSM. Then, we use obtained self-similarity information as auxiliary
supervisory signal to our baseline model. Our extractor module simultaneously filters out training
samples without meaningful self-similar information and outputs masks indicating spatial location of
reference patches and corresponding SSRs. Next, we describe necessary steps and assumptions in
more detail.

Fig. 3.2 shows the steps within the extractor module for finding meaningful SSRs. Starting from a
H×W LR input image, we first transform the input to greyscale color space and divide the image into
[NP ×P×P ] non-overlapping patches. Next, each image patch is taken as a template and we compute
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Figure 3.2: Overview of extractor module. We extract P non-overlapping patches from the greyss-
cale LR input image. Next, we compute SSM between each extracted patch and LR
input. Based on specific criteria, we select the most informative SSM and construct
corresponding masks indicating the reference patch (red mask) and NSSR SSRs (black
masks).

template matching to find similar patch reoccurrences by normalized cross-correlation, see Eq. (3.1).
We normalize each template by subtracting mean µP and dividing by standard deviation σP to
robustify template matching towards brightness variations. Additionally, we normalize the LR input
image I according to its mean µI and standard deviation σI . We rely on non-learnable methods for
extracting relevant SSRs due to their off-the-shelf effectiveness. Moreover, we reduce complexity and
computational demand of our training pipeline by not introducing additional learnable parameters
besides the SISR model.

SSM(x, y) =
∑︂
x,y

1

σIσP
(I(x, y)− µI)(P (x, y)− µP ) (3.1)

We obtain [NP × H × W ] SSMs with entries u ∈ [0, 1] where we denote u as similarity values.
Consequently, SSMs contain information about self-similar reoccurrences of the patches extracted
from LR input images. Global maxima of SSMs indicate correlation with given template and local
maxima represent SSRs to respective template. Given NP SSM proposals, we select the most fitting
SSM by computing the average similarity value over NSSR local maxima and select the candidate
SSM w.r.t the maximum overNP mean values. This filtering ensures to omit training samples without
meaningful self-similar information, e. g. texture-less, monochromatic images. Simultaneously, we
acquire valid PoIs with at least NSSR corresponding SSRs. Next, we construct NSSR+1 binary masks
by centering patches of size l × l around corresponding global and local maxima given by selected
SSM. The global maximum mask indicates the reference patch to which we compute attributions.
The NSSR local minima masks represent patch reoccurrences within respective LR image sample. We
treat the number of SSRs as hyperparameter NSSR which we will further investigate in Section 4.5.1.
We further conduct experiments regarding the spatial distance between the chosen PoI and respective
SSRs in Section 4.5.2.
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Figure 3.3: Overview of our proposed non-local attribution prior. Given obtained SSM and input
gradients, we derive the ratio vector s by dividing ℓ1-norm values ni at locations of SSRs
Ai

M by the sum of ℓ1-norm at the location of our PoI nPoI and respective SSRs ni.

3.4 Non-local Attribution Prior

Attribution methods give insights into the different contribution of input pixels to model predictions.
When dealing with attributions in computer vision, there is no per se groundtruth labeling available,
without relying on outside expert knowledge [58, 76], which quantifies exact feature importance.
Specifically in dense prediction tasks, assigning target values which assess the importance of individual
pixels seems unfeasible and is not necessarily model-independent. Nevertheless, we aim at combining
gained insights with our goal to further incorporate self-similarity properties of natural images to
improve SISR model performance.

Even though groundtruth knowledge about attributions of a specific PoI and its self-similar local
or non-local correspondences is limited, we assume that attribution methods should not only show
contributions from pixels within or in close proximity to the PoI, but also from available SSRs. We
achieve this by computing input gradients for a selected PoI and use specific constraints to encourage
similar contributions of corresponding SSRs. We assume the attribution computed w.r.t the PoI
as pseudo-groundtruth and postulate that every other similar region should contribute similarly
to the output. Note, we obtain input gradients w.r.t to a PoI but impose constraints solely on the
gradient norms computed at respective locations. Since raw gradient values are not necessarily
model-independent and we have no groundtruth labeling, comparing gradients directly could result
into assigning wrong pixel attributions. We constrain the ratios between gradient norms of PoIs
and respective SSRs to be equal to certain target values, which we treat as hyperparameters within
our proposed framework. As a consequence, concrete values of input gradients are decided by the
network itself and not affected by our attribution prior. Moreover, the network has the flexibility to
learn at training time to incorporate reasonable SSRs for predicting a reference patch.

We show an overview of our proposed attribution prior in Fig. 3.3. Or method takes as input binary
masks MPoI and MSSR produced by our extraction module (see Fig. 3.3(a)) and attributions A
computed w.r.t selected PoIs. Note, instead of computing input gradients for individual pixels laying
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within a respective PoI independently, we compute input gradients of the sum of pixel values inside
respective PoI. Given the sum rule for derivatives (see Eq. (3.2)), this is equal to the sum of gradients
for each individual pixel. This allows to compute the attribution map w.r.t the PoI by performing
only a single backpropagation step.

δ

δI

∑︂
x,y∈PoI

fθ(x, y) =
∑︂

x,y∈PoI

δ

δI
fθ(x, y) (3.2)

As shown in Fig. 3.3(b-c), we mask A with MPoI to select the region APoI
M corresponding to our PoI

from given attribution map A. Likewise, we obtain NSSR self-similar attribution regions ASSR
M by

applying MSSR to A. Next, we derive gradient norms nPoI and nSSR by computing the ℓ1-norm of
APoI
M and ASSR

M , respectively.

nPoI = ∥APoI
M ∥1 = ∥MPoI ⊙ A∥1 (3.3)

nSSR = ∥ASSR
M ∥1 = ∥MSSR ⊙ A∥1 (3.4)

with nPoI =

⎡⎢⎣n
PoI
1
...

nPoI
j

⎤⎥⎦ and nSSR =

⎡⎢⎣n
1
1 . . . ni

1
... . . . ...
n1
j . . . ni

j

⎤⎥⎦ (3.5)

We display obtained [N×1] vector nPoI and [N×NSSR]matrix nSSR in Eq. (3.5) where j and i denote
an individual sample in the dataset and an individual self-similar region per sample, respectively.
We compute [N ×NSSR] ratio vector s for imposing above mentioned constraints. By considering
ratios, we condition similar image regions to have similar ℓ1-norm without directly assigning explicit
gradient values for individual pixels. More precisely, for j-th sample we compute the ratio sij by
dividing ℓ1-norm of i-th self-similar region ni

j by the sum of ni
j and respective nPoI

j (see Eq. (3.7)).
This ensures that the model does not converge to the trivial case in which nPoI is increasing while
nSSR remains constant or even shrinks. We illustrate this process in Fig. 3.3(c-d). In Section 4.5.1
we investigate the dependency of our proposed attribution prior to the number NSSR of SSRs as well
as the spatial distance between SSRs and PoI.

LAP (s,w) =
1

NSSR

NSSR∑︂
i=1

(sij − wi
j)

2 (3.6)

s =

⎡⎢⎣s
1
1 . . . si1
... . . . ...
s1j . . . sij

⎤⎥⎦ with sij =
ni
j

nPoI
j + ni

j

(3.7)

w =

⎡⎢⎣w
1
1 . . . wi

1
... . . . ...
w1
j . . . wi

j

⎤⎥⎦ with wi
j = SSMj(x

i, yi) (3.8)

We treat the required strength of similarity between attributions of distinct regions as hyperparameter
w. Given proposed SSM by our extractor module, we have quantitative information about the
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similarity between the reference patch and its corresponding nearest neighbours. Therefore, it
is plausible to set hyperparameter w to be equal to local maxima of respective SSM, as shown in
Eq. (3.8) where (xi, yi) represents coordinates i-th self-similar region. We show an ablation study on
the hyperparameter w in Section 4.4.2 in which we asses the importance of this hyperparameter to
our proposed attribution prior. Lastly, we compute MSE between s and w as shown in Eq. (3.6).

L = LR(XLR, XHR) + λAPLAP (s,w) (3.9)

=
1

N

N∑︂
j=1

∥f(xjLR, θ)− xjHR∥1 +
1

N

N∑︂
j=1

1

NSSR

NSSR∑︂
i=1

(sij − wi
j)

2 (3.10)

Finally, we augment the objective function for training SISR networks as displayed in Eq. (3.9)
by adding our proposed non-local attribution prior LAP . In addition to standard reconstruction
objectives LR for SISR, which teaches models to output the super-resolved version of the LR input, we
add our prior term for encouraging exploitation of self-similar regions. As pixel-based reconstruction
objective we use the ℓ1-loss function. The hyperparameter λAP adjusts the strength of the attribution
prior which we will further investigate in Section 4.4. Given a training set with N LR images and
HR targets denoted as {xjLR, x

j
HR}Nj=1, the objective function using ℓ1-loss derives to Eq. (3.10).
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4 Experiments

In this chapter, we conduct extended experiments showing the behaviour of SISR models when
trained with our proposed attribution prior. We first give an overview of the implementation details.
Next, we present the metrics used for evaluation and datasets used for training and testing our
baselines and method. Afterwards, all important details of the training settings are given to ensure
reproducibility of our results.

4.1 Implementation

For our extensive experimental protocol, we select two popular SISR baselines with the scope in
mind to analyse a per se local operating method, e. g. EDSR, and sophisticated, non-local operating
methods, e. g. RCAN and RNAN. We introduced both methods and discussed their inherent differences
in Section 2.1.1. Architecturewise, we keep the baseline methods as proposed in their respective
pupblications and include their implementations into our SISR pipeline. In contrast to the EDSR
repository1, which deals as base implementation for many follow-up SISR works (e. g. RCAN), we use
data augmentation methods provided by torchvision2 package. Besides, we process training images
directly loaded from .png files without converting to .npy files.

Model Architecture SISR methods are in need of many training iterations (e. g. EDSR: 300K and
RCAN: 1, 725K) and recent work [42] indicates that training for even more iterations will help
overall reconstruction performance. Lin et al. [42] investigate different training techniques for
RCAN. One conclusion from their experimentation is that SISR models suffer more from underfitting
than overfitting. Consequently, as training time is further increased when including our attribution
prior to the training objective, we use smaller version of EDSR, RCAN and RNAN for conducting
hyperparameter studies and further ablations. We denote the modified versions as EDSR-T, RCAN-T
and RNAN-T, respectively. A full list of the architectural specifications are presented in Section 4.1.
Lastly, the best setting will be applied in a full-convergence training to investigate our attribution
prior on the unmodified models.

1See code on GitHub: github.com/sanghyun-son/EDSR-PyTorch
2See more in PyTorch documantation: pytorch.org/vision/stable/index.html
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Method Architecture specifications

Residual blocks Features Batch Normalization Receptive Field Parameters

EDSR
Base (EDSR-B) 32 256 No 75 × 75 40.7M
Tiny (EDSR-T) 16 64 No 37 × 37 1.4M

RCAN
Base (RCAN-B) 20 64 No global 15.4M
Tiny (RCAN-T) 6 64 No global 5.0M

RNAN
Base (RNAN-B) 10 64 No global 9.1M
Tiny (RNAN-T) 2 64 No global 1.9M

Table 4.1: Architecture specifications for EDSR, RCAN and RNAN models. We show architectural
parameter settings for our used baseline models throughout all experiments. All methods
use ReLU activation and no Batch Normalization. Receptive field estimations are based
on [23].

Training Settings We apply data augmentation during training of our investigated SISR models.
For the 800 DIV2K training images, we apply random horizontal and vertical flipping and random
rotations by α ∈ [90°, 180°, 270°]. In each training batch, 16 LR color patches with the size of 48× 48
are extracted as inputs. The SISR models are trained with ADAM optimizer with β1 = 0.9, β2 = 0.999
and ϵ = 10−8. We keep the initial learning rate η = 1× 10−4 fixed without decrease over the course
of training. The described training settings in accordance to [41] and [88]. Given computational
constraints when using attribution priors at training time and the overall lengthy training of SISR
baseline models, the number of epochs is set to 1000 for both EDSR-T and RCAN-T methods.

4.2 Datasets

It has become standard practice to utilize the DIV2K [1] dataset for training SISR models. The
dataset contains 1000 high-resolution images (2K resolution). The dataset is split into 800 training
images, 100 validation images and 100 test images. The validation split has been used for model
selection during training. The corresponding HR targets for the test split are not publicly available,
therefore we exclude the DIV2K test split from our evaluation protocol. For testing, in addition to
the standard four benchmarks for evaluating SISR performance, Set5 [4], Set14 [82], BSD100 [47]
and Urban100 [30], we include the HardCases testset consisting of 150 images proposed by [23]
within our evaluation protocol. The benchmark datasets Set5 and Set14 contain 5 and 14 validation
images, respectively, while both BSD100 and Urban100 count 100 validation images. Except for the
HardCases testset, all other benchmark contain images of varying spatial resolution.
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Figure 4.1: Visualization of test samples taken from HardCases testset [23]. Gu et al. selected
samples taken from DIV2K and Urban100 which had low average PSNR and high variance
across different state-of-the-art SR methods. HardCases testset contains images with
many high-frequency components, which are challenging for SR methods to restore.

HardCases Testset Gu et al. [23] follow the principle of interpreting challenging cases for SISR
models. As the LR image lacks in important high-frequency details, restoring those poses as the main
challenge. Therefore, [23] sample sub-images of size 256× 256 from the validation set of DIV2K and
Urban100. Next, based on low average PSNR performance and high variance between different SR
networks, the most challenging 150 sub-images are selected and form the final testset. In Fig. 4.1
we visualize randomly selected samples from the HardCases dataset. The shown samples contain
abundant amounts of high-frequency components, e. g. grid-like patterns and challenging textures.
For more details please refer to [23].

4.3 Metrics

We evaluate SISR reconstruction performance with PSNR, Structural Similarity Index Measure (SSIM)
[75] and DI score [23]. Similar to prior works [41, 88], the SR images are first transformed to
YCbCr color space and then evaluated on the Y channel (luminance). Additionally, it is common for
ignoring unwanted image boundary artefacts to remove (6 + scale) pixels from the image border
before evalutation [41]. Next, we briefly describe the used evaluation metrics and shed light on their
mathematical expressions.

Peak Signal-to-Noise Ratio PSNR expresses the ratio of a signal between its maximum possible
value and noise present in its current measurement which distorts the original signal representation.
Image quality assessment can be highly subjective, differing from person to person [32, 87]. That
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being so, it is required to establish quantitative measures for comparing the results produced by image
restoration algorithms. In Eq. (4.1), y represents the original image while x is the LR counterpart.
The MSE allows to compare ”true” pixel values to the values produced by restoration algorithms. In
contrast to perceptual metrics, PSNR relies on numeric comparison between images and disregards
characteristics of the human vision system.

PSNR = 20 log10
(︃
max(y)√
MSE

)︃
(4.1)

MSE =
1

N

N∑︂
i=1

(x− y)2 (4.2)

Structural Similarity Index Measure For constructing a metric reflecting properties of the human
visual system, SSIM extracts three features from images, luminance, contrast and structure. Lumi-
nance µ is measured by computing the average over all pixel values. Contrast σ is the standard
deviation of pixel values. Structure s is computed as a normalization of given image x with its
mean µ and standard deviation σ. Next, comparison functions between predicted images and target
images estimate the differences between images w.r.t each feature. Lastly, a combination function
determines the final SSIM value scaled between [0, 1], where 0 is lowest and 1 is highest possible
value, respectively.

Luminance l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4.3)

Contrast c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.4)

Structure s(x, y) =
σxy + C3

σx + σy + C3
with σxy =

1

N − 1

N∑︂
i=1

(xi − µx)(yi − µy) (4.5)

SSIM = [l(x, y)]α ∗ [c(x, y)]β ∗ [s(x, y)]γ (4.6)

C1,2,3 are constants for numerical purposes and at this point will not be further explained. α > 0,
β > 0 and γ > 0 indicate the importance of each feature metric. The authors propose further to
estimate each metric in a local window instead of globally over the entire image. The implementation
we use in this work does exactly that.

Diffusion Index Besides introducing LAM as a visualization technique for SISR methods, [23]
further propose a quantitative metric to estimate the range of involved pixels for predicting a local
image patch. Based on the Gini coefficient, originally intended to measure income inequality, the
authors construct the DI,

G =

∑︁n
i=1

∑︁n
j=1 |gi − gj |
2n2ĝ

(4.7)

DI = (1−G)× 100 (4.8)
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where gi,j denotes the absolute value in ith and jth dimension of the attribution map, respectively,
and ĝ the averaged value. Here, the inequality of pixel contribution to the attribution results expresses
the range of involved pixels. Gini coefficient is in range G ∈ [0, 1], thus large DI values indicate more
involved pixels.

4.4 Hyperparameter Search

In this section, we will investigate the sensitivity of our proposed method to in Section 3.4 described
hyperparameters. We conduct experiments on EDSR-T and RCAN-T methods to find suitable hy-
perparameter settings. First, we look into the contribution of our proposed attribution prior to the
overall objective function by the weighting factor λAP . We start from a minimal setup with low
weighting and continuously increase the contribution of our prior. Next, we assess the influence of
hyperparameter w which controls the required strength of similarity between gradient norms of
distant image regions. We start by manually tuningw and continue with investigating our assumption
stated in Section 3.4 to assign local maxima values given by the candidate SSM as targets.

4.4.1 Weighting Factor λAP

Starting from the training configuration described in Section 4.1, we initially investigate model per-
formance based on the weighting parameter λAP between the standard reconstruction loss for SISR
and our proposed attribution prior. We apply minimal modifications to the standard reconstruction
objective by focusing only on a single corresponding self-similar region within close proximity to
the selected PoI. Convolutional operators combine information from a local input area to produce a
respective output. Naturally, we encourage by training with our attribution prior to exploit self-similar
information in the local neighbourhood around the selected PoI. In subsequent ablation studies, we
steadily increase the complexity of our attribution prior, e. g. increasing number of SSRs or spatial
distance between patches, and investigate occurring changes.

We conduct hyperparameter search w.r.t λAP on our tiny versions of investigated methods EDSR,
RCAN and RNAN, denoted as EDSR-T, RCAN-T and RNAN-T, due to hardware restrictions and overall
long training time of SISR models, see Section 4.1. Table 4.2 shows results comparing the recon-
struction performance of investigated models trained with and without our attribution prior. We
report results on Set5, Set14, BSD100, Urban100 and HardCases benchmark datasets in terms of
PSNR and SSIM. Results are averaged over 4 runs, each initialized with a different random seed.
Note, for selecting the candidate SSM, we set NSSR = 5 and follow described process in Section 3.3.
In Fig. 4.2 we visualize DI scores for different λAP and baselines obtained from training EDSR-T,
RCAN-T and RNAN-T models.
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Method λAP
Set5 Set14 BSD100 Urban100 HardCases

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
EDSR-T
Baseline - 37.42 0.9585 33.01 0.9127 31.78 0.8947 30.60 0.9118 28.24 0.9146

±0.0553 ±0.0001 ±0.0319 ±0.0001 ±0.0147 ±0.0001 ±0.0239 ±0.0004 ±0.0439 ±0.0007

w/ ours 1e-4 37.44 0.9586 33.03 0.9127 31.78 0.8946 30.61 0.9119 28.26 0.9150
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours 5e-4 37.41 0.9585 33.02 0.9127 31.77 0.8946 30.61 0.9118 28.24 0.9147
±0.0601 ±0.0001 ±0.0203 ±0.0002 ±0.0137 ±0.0002 ±0.0269 ±0.0004 ±0.0475 0.0009

w/ ours 1e-3 37.39 0.9583 33.01 0.9126 31.76 0.8944 30.58 0.9115 28.22 0.9144
±0.0597 ±0.0002 ±0.0211 ±0.0002 ±0.0177 ±0.0003 ±0.0355 ±0.0005 ±0.0581 ±0.0010

w/ ours 5e-3 37.26 0.9576 32.92 0.9117 31.71 0.8938 30.47 0.9101 28.08 0.9124
±0.0224 ±0.0001 0.0161 ±0.0001 ±0.0049 ±0.0001 ±0.0345 ±0.0005 ±0.0537 ±0.0009

w/ ours 1e-2 37.16 0.9570 32.84 0.9109 31.66 0.8930 30.28 0.9077 27.87 0.9090
±0.0425 ±0.0001 ±0.0310 ±0.0002 ±0.0193 ±0.0003 ±0.0251 ±0.0004 ±0.0419 ±0.0007

RCAN-T
Baseline - 37.79 0.9599 33.39 0.9162 32.05 0.8982 31.64 0.9236 29.60 0.9318

±0.0202 ±0.0001 ±0.0183 ±0.0002 ±0.0148 ±0.0002 ±0.0089 ±0.0001 ±0.0287 ±0.0002

w/ ours 1e-4 37.78 0.9599 33.39 0.9163 32.05 0.8983 31.63 0.9236 29.58 0.9317
±0.0208 ±0.0001 ±0.0075 ±0.0001 ±0.0128 ±0.0001 ±0.0485 ±0.0003 ±0.0636 ±0.0008

w/ ours 5e-4 37.79 0.9599 33.40 0.9164 32.04 0.8984 31.62 0.9235 29.56 0.9317
±0.0302 ±0.0001 ±0.0207 ±0.0002 ±0.0133 ±0.0002 ±0.0538 ±0.0006 ±0.0646 ±0.0009

w/ ours 1e-3 37.76 0.9595 33.32 0.9150 32.02 0.8977 31.55 0.9224 29.46 0.9303
±0.0482 ±0.0002 ±0.0153 ±0.0005 ±0.0138 ±0.0003 ±0.0391 ±0.0005 ±0.0518 ±0.0007

w/ ours 1e-3 37.68 0.9593 33.25 0.9148 31.95 0.8970 31.33 0.9202 29.16 0.9268
±0.0114 ±0.0001 ±0.0293 ±0.0004 ±0.0209 ±0.0004 ±0.0439 ±0.0005 ±0.0710 ±0.0008

w/ ours 1e-2 37.62 0.9589 33.19 0.9139 31.94 0.8966 31.27 0.9192 29.10 0.9260
±0.0732 ±0.0005 ±0.0460 ±0.0005 ±0.0407 ±0.0005 ±0.1124 ±0.0012 ±0.1254 ±0.0016

RNAN-T
Baseline - 37.48 0.9587 33.05 0.9132 31.85 0.8957 30.82 0.9151 28.45 0.9182

±0.0799 ±0.0001 ±0.0148 0.0001 ±0.0179 ±0.0002 ±0.0741 ±0.0006 ±0.1206 ±0.0011

w/ ours 1e-5 37.52 0.9589 33.07 0.9135 31.85 0.8960 30.83 0.9153 28.51 0.9195
±0.0580 0.0001 ±0.0236 ±0.0001 ±0.0056 ±0.0002 ±0.0407 ±0.0006 ±0.0220 ±0.0006

w/ ours 1e-4 37.52 0.9588 33.08 0.9134 31.85 0.8957 30.85 0.9152 28.49 0.9189
±0.0172 ±0.0001 ±0.0147 ±0.0002 ±0.0066 ±0.0002 ±0.0349 ±0.0004 ±0.0319 ±0.0005

w/ ours 1e-3 37.43 0.9585 33.01 0.9131 31.82 0.8954 30.73 0.9140 28.38 0.9175
±0.0302 ±0.0001 ±0.0207 ±0.0002 ±0.0133 ±0.0002 ±0.0538 ±0.0006 ±0.0646 ±0.0009

Table 4.2: Results of λAP variation on EDSR-T, RCAN-T and RNAN-T baselines. We report obtained
results of investigating the contribution of our attribution prior to the overall objective.
Results were produced for ×2 super-resolution using described training setup and aver-
aged over 4 different random seeds. Note, in case of RNAN-T, we averaged over 6 random
seeds to compensate for outliers, therefore we include only λAP ∈ [1e− 5, 1e− 4, 1e− 3].

The first section of Table 4.2 shows results for EDSR-T. We observe consistent improvement almost
across all benchmarks with λAP = 1 × 10−4. Interestingly, training with our attribution prior sig-
nificantly improves reconstruction performance of EDSR-T on HardCases testset. As described in
Section 4.2, the HardCases testset contains challenging images for SISR with large amounts of repeat-
ing patterns and complex textures, where non-locality has shown to be helpful for reconstructing these
high-frequency components [89, 49, 48, 23]. Our proposed attribution prior acts as a regularizer
which helps to better generalize towards those challenging test images. Moreover, this experiment
indicates the sensibility of training SISR models with our attribution prior as the reconstruction
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Figure 4.2: Visualization of DI scores for EDSR-T and RCAN-T models.

performance drops significantly when increasing its contribution to the training objective. On the
other hand, we observe a drastic increase in terms of DI scores. [23] establish a relationship between
DI scores of different SISR methods and their respective PSNR results and conclude that an increased
range of involved pixels highly correlates with better SR performance. Contrary to described findings
by Gu et al., we observe that high DI scores do not necessarily correlate with better reconstruction
performance. Our investigations with EDSR-T show that a slight increase suffices, while further
expanding the range of involved pixels decreases PSNR and SSIM results. It does not suffice for SISR
networks to simply involve more input pixels for predicting a reference patch. Our experiments hint
at the importance of correctly making use of the additionally available information. We take the
overall worse results when training RCAN-T as further proof for our finding: Even though analyses of
[23] show that RCAN achieves high DI scores and reconstruction results, we do not observe significant
improvement for any investigated λAP . Note, we conduct this hyperparameter study with a smaller
version (RCAN-T), which is larger and outperforms EDSR-T in both reconstruction performance as
well as DI scores, but does not profit from training with our proposed prior, see Table 4.2, Fig. 4.2
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Figure 4.3: Visualization of attribution maps of EDSR-T and RCAN-T trained /w and w/o our proposed
attribution prior. The attribution maps of both baseline models show already their
different range of involved pixels for predicting a centered image patch (red). When
applying our prior, we clearly observe more involved pixels in case of RCAN-T. Attribution
map of EDSR-T shows only marginal changes.

and Fig. 4.3. RCAN is a very deep CNN (> 400 convolutional layers) with global operations and
therefore a more complex method than EDSR-T. However, it seems that our attribution prior leads to
degraded reconstruction performance. The experimental results show that our attribution prior is
more effective on EDSR-T.

Following the inconsistent results from our experiments with EDSR-T and RCAN-T, we further inves-
tigate our method applied to more complex networks, e. g. RNAN-T. As described in Section 2.1.1,
RNAN and its tiny version contains local and non-local attention blocks to effectively model long-
range dependencies. We are interested in how our prior can make use of architectures with build-in
components for modeling non-locality. Table 4.2 show consistent improvement over RNAN-T baseline,
specifically on HardCases testset, for λAP = 1 × 10−4 and λAP = 1 × 10−5. In case of RNAN-T,
we select λAP = 1 × 10−4 for subsequent experiments to stay comparable across investigated SR
models, even though λAP = 1 × 10−5 leads to even stronger improvements over the baseline on
HardCases testset. Furthermore, our attribution prior increases DI scores significantly, while outper-
forming the baseline across all tested benchmarks. Surprisingly, we observe a decreasing DI score
and simultaneously achieve worst SR performance across all benchmarks with higher attribution
prior contribution, which is contradicting previous experiments on EDSR-T and RCAN-T. This again
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Method w Set5 Set14 BSD100 Urban100 HardCases
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-T
Baseline - 37.42 0.9585 33.01 0.9127 31.78 0.8947 30.60 0.9118 28.24 0.9146

±0.0553 ±0.0001 ±0.0319 ±0.0001 ±0.0147 ±0.0001 ±0.0239 ±0.0004 ±0.0439 ±0.0007

w/ ours 0.1 37.42 0.9585 33.02 0.9126 31.76 0.8945 30.60 0.9118 28.22 0.9146
±0.0193 ±0.0002 ±0.0196 ±0.0003 ±0.0141 ±0.0004 ±0.0374 ±0.0006 ±0.0623 ±0.0010

w/ ours 0.5 37.44 0.9585 33.02 0.9127 31.77 0.8945 30.60 0.9119 28.23 0.9148
±0.0201 ±0.0002 ±0.0248 ±0.0003 ±0.0188 ±0.0004 ±0.0338 ±0.0005 ±0.0503 ±0.0008

w/ ours 1.0 37.44 0.9585 33.02 0.9126 31.77 0.8945 30.60 0.9118 28.22 0.9147
±0.0193 ±0.0002 ±0.0201 ±0.0002 ±0.0157 ±0.0003 ±0.0291 ±0.0004 ±0.0402 ±0.0005

w/ ours Sim 37.44 0.9586 33.03 0.9127 31.78 0.8946 30.61 0.9119 28.26 0.9150
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

RCAN-T
Baseline - 37.79 0.9599 33.39 0.9162 32.05 0.8982 31.64 0.9236 29.60 0.9318

±0.0202 ±0.0001 ±0.0183 ±0.0002 ±0.0148 ±0.0002 ±0.0089 ±0.0001 ±0.0287 ±0.0002

w/ ours 0.1 37.73 0.9598 33.38 0.9162 32.06 0.8984 31.66 0.9238 29.63 0.9321
±0.0583 ±0.0001 ±0.0389 ±0.0002 ±0.0021 ±0.0001 ±0.0169 ±0.0001 ±0.0322 ±0.0001

w/ ours 0.5 37.78 0.9598 33.37 0.9159 32.05 0.8980 31.65 0.9236 29.61 0.9319
±0.0376 ±0.0001 ±0.0237 ±0.0006 ±0.0162 ±0.0004 ±0.0720 ±0.0008 ±0.1060 ±0.0013

w/ ours 1.0 37.77 0.9598 33.35 0.9159 32.05 0.8982 31.67 0.9237 29.61 0.9321
±0.0589 ±0.0001 ±0.0406 ±0.0001 ±0.0117 ±0.0003 ±0.0338 ±0.0006 ±0.0633 ±0.0008

w/ ours Sim 37.78 0.9599 33.39 0.9163 32.05 0.8983 31.63 0.9236 29.58 0.9317
±0.0208 ±0.0001 ±0.0075 ±0.0001 ±0.0128 ±0.0001 ±0.0485 ±0.0003 ±0.0636 ±0.0008

Table 4.3: Results of w variation on EDSR-T and RCAN-T. Here we report the results obtained from
investigating different target values for w. We set the weighting factor to λAP = 1 ×
10−4. Sim indicates that w is equal to obtained self-similarity values for each respective
SSR. Results were produced for ×2 super-resolution using described training setup and
averaged over 4 different random seeds.

points out the sensitivity of SR models towards our attribution prior and possible instabilities which
can occur during training. Still, obtained results show the importance of utilizing a larger range of
involved pixels in the right way. Even though RCAN-T achieves higher DI scores, it does not translate
to better reconstruction performance compared to RNAN-T. Note, in order to compensate for outliers
regarding the RNAN-T baseline model, we average RNAN-T results over 6 random seeds.

In Fig. 4.3 we show SR outputs of both EDSR-T and RCAN-T models trained w/ and w/o our proposed
attribution prior and use LAM for visualizing their corresponding attribution maps. The attribution
maps for EDSR-T baseline model and trained with our attribution prior show only marginal changes,
which is also reflected in Fig. 4.2. In case of RCAN-T, the baseline already indicates its potential for
having a larger range of involved pixels. When trained with our attribution prior, we can further
exploit this ability. Unfortunately, we do not observe improvement in reconstruction performances as
described above.
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4.4.2 Balancing Factor for Norm Ratios

Our method is built around the idea of computing gradient norms at the locations of PoIs and
comparing them to gradient norms at corresponding SSRs. We then assign obtained ratio pairs
target values w which the network should approximate. We enforce this by a MSE loss term between
ratios and their respective target values. Selecting these target values is of critical importance to
our method as it ideally should decide how much attribution the network learns to assign to each SSR.

Assigning low target values assumes that the computed attribution w.r.t to the PoI should be mainly
centered in a tight local neighbourhood around given PoI. This translates to encouraging the model
to incorporate mainly local information. Meanwhile when we assign high target values, we support
the integration of more global pixel information. Instead of manually tuning w, we can make use
of the relative strength of similarity between a PoI and its corresponding SSRs provided by the
candidate SSM. We take the local maxima values and assign them as targets. We apply the same
constraints as described in Section 4.4.

Table 4.3 shows results comparing the reconstruction performance of EDSR-T and RCAN-T on
our benchmark datasets while varying w ∈ [0.1, 0.5, 1.0]. When setting w = 0.1 we observe no
improvement, even resulting in lower PSNR on BSD100 and HardCases testset than compared to
the EDSR-T baseline. Interestingly, we achieve still no significant improvement when continuously
increasing w. Assigning target values for w based on self-similarity maxima, denotes as Sim in
Table 4.3, has two benefits: First, we achieve consistent improvement or on-par reconstruction
performance in comparison to the EDSR-T baseline and secondly, we reduce the complexity and
training time of our method by utilizing apparent information stemming from SSMs. Varying w in
case of RCAN-T method does not result into a setting which shows consistent improvements across
the board, but selecting w = 0.1 outperforms the baseline significantly on HardCases testset. The
results obtained from experimentation made with RCAN-T indicate that choosing an appropriate
w can be model-dependent. Surprisingly, we achieve worst PSNR and SSIM scores with w = Sim
which contradicts our results from investigating EDSR-T. Section 4.4 already shows the difficulty
of applying our proposed attribution prior to RCAN-T which still holds for this experiment. Still,
our method provides the flexibility to tune w according to underlying SISR method. Subsequent
ablation studies continue with hyperparameters λAP = 1 × 10−4 and w = Sim chosen based on
above experiments.

4.5 Ablation Experiments

In the subsequent ablations we take a deeper look into the importance of self-similarity to our
approach. Besides, we investigate effects of our attribution prior when SSRs are constraint to be
spatially more distant w.r.t to the PoI. Additionally, we evaluate how attribution norms of models
trained with our prior distribute over similar and dissimilar input regions. Lastly, we evaluate
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Method NSSR
Set5 Set14 BSD100 Urban100 HardCases

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
EDSR-T
Baseline - 37.42 0.9585 33.01 0.9127 31.78 0.8947 30.60 0.9118 28.24 0.9146

±0.0553 ±0.0001 ±0.0319 ±0.0001 ±0.0147 ±0.0001 ±0.0239 ±0.0004 ±0.0439 ±0.0007

w/ ours 1 37.44 0.9586 33.03 0.9127 31.78 0.8946 30.61 0.9119 28.26 0.9150
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours 2 37.42 0.9585 33.02 0.9128 31.77 0.8947 30.59 0.9118 28.23 0.9148
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours 3 37.43 0.9585 33.02 0.9128 31.77 0.8946 30.59 0.9118 28.23 0.9148
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours 1∗ 37.45 0.9586 33.02 0.9126 31.78 0.8947 30.62 0.9121 28.25 0.9152
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours 2∗ 37.44 0.9585 33.01 0.9126 31.77 0.8946 30.62 0.9120 28.24 0.9150
±0.0119 ±0.0001 ±0.0318 ±0.0002 ±0.0203 ±0.0003 ±0.0296 ±0.0003 ±0.0374 ±0.0006

w/ ours 3∗ 37.48 0.9586 33.03 0.9126 31.77 0.8946 30.62 0.9121 28.26 0.9153
±0.0367 ±0.0001 ±0.0093 ±0.0001 ±0.0138 ±0.0001 ±0.0089 ±0.0001 ±0.0067 ±0.0003

RCAN-T
Baseline - 37.79 0.9599 33.39 0.9162 32.05 0.8982 31.64 0.9236 29.60 0.9318

±0.0202 ±0.0001 ±0.0183 ±0.0002 ±0.0148 ±0.0002 ±0.0089 ±0.0001 ±0.0287 ±0.0002

w/ ours 1 37.78 0.9599 33.39 0.9163 32.05 0.8983 31.63 0.9236 29.58 0.9317
±0.0208 ±0.0001 ±0.0075 ±0.0001 ±0.0128 ±0.0001 ±0.0485 ±0.0003 ±0.0636 ±0.0008

w/ ours 2 37.76 0.9598 33.36 0.9157 32.03 0.8979 31.55 0.9227 29.51 0.9306
±0.0375 ±0.0001 ±0.0237 ±0.0003 ±0.0382 ±0.0005 ±0.1552 ±0.0015 ±0.1590 ±0.0021

w/ ours 3 37.77 0.9599 33.35 0.9158 32.04 0.8980 31.61 0.9232 29.57 0.9313
±0.0268 ±0.0002 ±0.0136 ±0.0004 ±0.0230 ±0.0004 ±0.0853 ±0.0010 ±0.0830 ±0.0011

Table 4.4: Results of ablation study which investigates benefits of including an increasing number
NSSR of self-similar regions. Additional self-similar information is constrained to be
spatially local around selected PoI. We also investigate NSSR without locally constrain-
ing potential SSRs, denoted by ∗. Results are produced for ×2 super-resolution using
described training setup with EDSR-T and RCAN-Tmodels averaged over 4 random seeds.

restoration performance in terms of PSNR solely on SSRs acquired from our extraction module and
show actual SR imagery for a visual comparison between baseline and our approach.

4.5.1 Number of Self-Similar Regions

Following the hyperparameter study in Section 4.4, we continue to investigate the behaviour of our
proposed attribution prior depending on the number of SSRs processed by our method. Here, we
conduct two separate analyses. First, we increase the number of selected SSRs in close proximity to
the initially selected PoI. Then, we omit this spatial constraint and study the influence of multiple
SSRs with arbitrary placement over the entire image.

Consistently with Section 4.4, we report results in Table 4.4 with λAP = 1× 10−4 and w = Sim. We
constrain the location of possible SSRs to a local neighbourhood of size 7×7 centered around the PoI.
A visualization of described constraint is shown in Fig. 4.4 Scenario 1. Surprisingly, the increase of
local SSRs does not lead to better reconstruction performance across evaluated benchmark datasets.

39



Moreover, we achieve worst results when we select NSSR = 2 on both EDSR-T and RCAN-T models.
Increasing the amount of SSRs does also not necessarily coincide with exploiting more self-similar
information due to limited local search window. Note, we use max pooling operations to find local
maxima within obtained SSMs. Therefore, chances are that for certain training samples, we do not
find exactly NSSR > 1 self-similar regions corresponding to the PoI within the constrained search
window. It is possible that dissimilar regions are selected to satisfy the local constraint which results
in processing less valuable information with increasing number of SSRs, which would explain the
ineffectiveness of locally constraint SSRs. Besides, the informational content of a local region could be
already saturated when a single SSR is additionally processed. Then, selecting more locally bounded
SSRs does not increase the amount of valuable information, thus the network does not learn more
meaningful representation by looking at many local SSRs. As we do not achieve promising results for
RCAN-T with hyperparameters λAP = 1× 10−4 and w = Sim, we exclude this method from further
ablations to keep following experiments comparable.

We conduct further experiments using EDSR-T model where we omit the local search window and
allow arbitrary spacing between PoI and corresponding SSRs. Here, we again increase the number of
SSRs. We achieve our best results when choosing NSSR = 3 SSRs with arbitrary placing. Following
the explanations from above, it is reasonable to assume that arbitrary placed SSRs contain more
valuable information, e. g. more self-similar regions. In contrast to locally bound SSRs, it is more
likely that for our specific data NSSR = 3 SSRs will be available for a given training sample. But,
with arbitrary placement we have no more information about the spatial location of chosen SSRs
and its effects on our method. Therefore, we will further explore the spatial dependency of SSRs,
in particular the distance towards the PoI, to our proposed attribution prior in following ablation
experiment.

4.5.2 Spatial Proximity between Image Regions

Non-locality has proven to be useful in recent SR methods [89, 49, 48]. We strive to exploit this
paradigm by combining information from distant image regions. Experiments conducted in Sec-
tion 4.5.1 show that removing the local constraint on SSRs has the potential of further improving
SR results. Therefore, we continue to investigate the model behaviour while being trained with our
attribution prior depending on the spatial proximity of selected PoI and a corresponding SSR. For
this, we consider Scenario 2 visualized in Fig. 4.4. While we considered in previous experiments
constraining potential SSRs to lay inside a local search window centered around the PoI (see Fig. 4.4
Scenario 1), we invert this constraint in Scenario 2 and allow potential SSR only to be selected when
they are outside of the local search window. We refer to those regions as global SSRs. In correspon-
dence to our training settings described in Section 4.1, we keep input crop size fixed to 48× 48 and
compute attributions for PoIs of size 5 × 5. Besides, we keep λAP = 1 × 10−4. In Scenario 1, we
search for a single self-similar region w.r.t our PoI within a local search window of size 7× 7. When
investigating Scenario 2, we suppress self-similar regions within a 11× 11 neighbourhood to promote
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

𝑃𝑜𝐼𝑃𝑜𝐼 𝑃𝑜𝐼 𝑃𝑜𝐼

𝑆𝑆𝑅

𝑆𝑆𝑅

𝑅𝑎𝑛𝑑.

𝑅𝑎𝑛𝑑.

Figure 4.4: Visualization of different investigated configurations for selecting self-similar region. Sce-
nario 1: We constrain the potential self-similar region to be inside a local neighbourhood.
Scenario 2: We select a global self-similar region constraint to be outside of the local
neighbourhood. Scenario 3: We choose a random region constraint to be inside a local
neighbourhood. Scenario 4: We choose a random global region outside of the local
neighbourhood.

selection of more distant regions. Note, we do not further specify how distant a global SSR actually is.

We report results obtained for Scenario 1 and Scenario 2 in Table 4.5 on both EDSR-T and RNAN-T
models. Keep in mind that Scenario 1 is equal to the experimental setup established in Section 4.4.
We repeat above results for better comparison. Our method improves significantly when considering
a global SSR (Scenario 2) on HardCases testset and Urban100. This supports our hypothesis from
Section 4.5.1 of limited exploitable self-similar information in a constraint window around the PoI.
Unfortunately, Scenario 2 leads to slightly decreasing SR performance on Set5, Set14 and BSD100.
However, we can interpret this behaviour as a regularization effect imposed on EDSR-T by our
attribution prior which leads to better generalization towards challenging imagery. Obtained results
let us assume that we impose a stronger regularization effect on SR methods when enforcing more
non-locality. Regarding RNAN-T, Scenario 2 outperforms results obtained from locally constraint
SSRs consistently. Note, given previous conflicting results obtained from RCAN-T, we disregard
RCAN-T in following experiments.

4.5.3 Selection of Random Regions

Our key motivation is to exploit self-similar information present in current training sample. In this
ablation, we will study how our attribution prior effects SISR methods when we select image regions
based on randomness instead of self-similarity. We continue with described experimental setups from
Section 4.5.2, but investigate if our prior promotes networks to exploit self-similarity by omitting the
extraction of SSRs and instead sample random patches from a uniform distribution, see Scenario 3
and Scenario 4 in Fig. 4.4.
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Method Scenario Set5 Set14 BSD100 Urban100 HardCases
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-T
Baseline - 37.42 0.9585 33.01 0.9127 31.78 0.8947 30.60 0.9118 28.24 0.9146

±0.0553 ±0.0001 ±0.0319 ±0.0001 ±0.0147 ±0.0001 ±0.0239 ±0.0004 ±0.0439 ±0.0007

w/ ours Scenario 1 37.44 0.9586 33.03 0.9127 31.78 0.8946 30.61 0.9119 28.26 0.9150
±0.0257 ±0.0001 ±0.0131 ±0.0001 ±0.0121 ±0.0002 ±0.0125 ±0.0001 ±0.0342 ±0.0005

w/ ours Scenario 2 37.43 0.9586 33.02 0.9126 31.77 0.8946 30.62 0.9121 28.27 0.9154
±0.0325 ±0.0001 ±0.0511 ±0.0002 ±0.0177 ±0.0002 ±0.0272 ±0.0003 ±0.0381 ±0.0005

w/ ours Scenario 3 37.45 0.9586 33.03 0.9127 31.77 0.8945 30.60 0.9117 28.24 0.9147
±0.0419 ±0.0001 ±0.0158 ±0.0002 ±0.0163 ±0.0003 ±0.0159 ±0.0002 ±0.0399 ±0.0006

w/ ours Scenario 4 37.44 0.9585 33.04 0.9127 31.77 0.8945 30.62 0.9121 28.26 0.9153
±0.0282 ±0.0001 ±0.0269 ±0.0003 ±0.0213 ±0.0002 ±0.0042 ±0.0004 ±0.0121 ±0.0007

RNAN-T
Baseline - 37.48 0.9587 33.05 0.9132 31.85 0.8957 30.82 0.9151 28.45 0.9185

±0.0799 ±0.0001 ±0.0148 0.0001 ±0.0179 ±0.0002 ±0.0741 ±0.0006 ±0.1206 ±0.0011

w/ ours Scenario 1 37.52 0.9588 33.08 0.9134 31.85 0.8957 30.85 0.9152 28.49 0.9189
±0.0172 ±0.0001 ±0.0147 ±0.0002 ±0.0066 ±0.0002 ±0.0349 ±0.0004 ±0.0319 ±0.0005

w/ ours Scenario 2 37.53 0.9588 33.08 0.9133 31.85 0.8958 30.84 0.9153 28.51 0.9191
±0.0498 ±0.0001 ±0.0319 ±0.0002 ±0.0157 ±0.0002 ±0.0321 ±0.0002 ±0.0403 ±0.0006

w/ ours Scenario 3 37.52 0.9588 33.09 0.9134 31.86 0.8959 30.87 0.9157 28.53 0.9196
±0.0252 ±0.0001 ±0.0155 ±0.0004 ±0.0142 ±0.0003 ±0.0242 ±0.0005 ±0.0301 ±0.0006

w/ ours Scenario 4 37.52 0.9588 33.09 0.9133 31.85 0.8957 30.85 0.9155 28.51 0.9193
±0.0304 ±0.0002 ±0.0300 ±0.0003 ±0.0082 ±0.0002 ±0.0236 ±0.0003 ±0.0337 ±0.0006

Table 4.5: Results of investigating 4 different scenarios described in Fig. 4.4Herewe report the results
obtained from constraint relaxation. Results were produced for×2 super-resolution using
described training setup with EDSR-T and RNAN-T models averaged over 4 different
random seeds.

Table 4.5 shows results from investigating above mentioned scenarios. We compare SR performance
of locally and globally selected SSRs to randomly selected local and global image regions. Regarding
EDSR-T, we notice decreasing reconstruction performance on HardCases testset, Urban100 and
BSD100 when selecting a random local region and best results when considering a global SSR (Sce-
nario 2), showing the ability of our attribution prior of exploiting local self-similar information. Rather
surprisingly, we still achieve strong results on EDSR-T considering random selection (Scenario 4),
which also contradicts obtained lower SR results when investigating random local selection (Scenario
3). Similar to EDSR-T, selecting a global region improves over Scenario 1 on RNAN-T, but we observe
once again conflicting results. We achieve strong results on HardCases testset when considering a
global random region (Scenario 3) instead of regions selected based on self-similarity. Selecting a
random local region further improves upon Scenario 2. A possible explanation could be that it is likely
for randomly selected image regions to still contain valuable self-similar information. Moreover, these
results suggest that observed SR improvements do not necessarily stem from exploiting self-similarity.
Our experiments in Section 4.4 show that a marginally increased range of involved pixels already
leads to better PSNR results. Consequently, the gain in SR performance which we experience can
be based on an overall locally larger attribution map. This can also be seen in Fig. 4.3 where in
case of EDSR-T the attribution map enlarges in close proximity to the centered PoI. Therefore, the
possibility exists that it is irrelevant whether distant image regions are self-similar or randomly chosen.
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Figure 4.5: Visualization of attribution norm analysis. We visualize the attribution norm in spatial
dimension by consistently enlarging the area over which we compute attribution norm.
We normalize obtained attribution norms w.r.t respective PoI. We display norm distribu-
tion between similar and dissimilar image regions.

We want to gain a deeper understanding of the effects of our attribution prior on SISR methods.
Our analysis follows two objectives: First, we want to understand the spatial distribution across the
entire image of attribution norms computed w.r.t a PoI and look into changes introduced by our prior.
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Second, taking obtained results from Scenario 3 and Scenario 4 into consideration, we cannot derive
to a convincing argument that methods trained with our prior do exploit self-similar information.
Consequently, we aim at investigating whether our prior increases gradient norms of similar pixels.
For answering those questions, we first compute attribution norms over an spatially increasing region
of our image. We select a PoI of size 13× 13 and construct 5 rectangular sections centered around
selected PoI3. The spatial dimension of each section is increased by 20 pixels in width and height
in comparison to previous section. Secondly, we take above introduced sections and compute the
ratio between attribution norms of similar and dissimilar image pixels. We threshold a candidate
SSM into binary masks classifying input pixels as similar or dissimilar. In Fig. 4.5 we visualize our
above described analysis for EDSR-T and RNAN-T, respectively. We compare attribution norms and
similar-to-dissimilar ratios of EDSR-T and RNAN-T baselines to in Section 4.5.2 introduced scenarios.
Starting from the PoI, we increase with each section the region over which we compute respective
attribution norms. Note, we normalize the per-section attribution norm by the corresponding PoI
norm to show the spatial distribution and increase of attributions relative to the PoI. Additionally, this
allows for model-independent comparison as the dependency to absolute norm values is alleviated.
Fig. 4.5 show that the largest part of attribution is concentrated within the PoI or in its close proximity
(Section 1 and Section 2). Counterintuitively, our prior seems to not noticeably increase attribution
norms of distant sections in all considered cases. The increase of attribution norm outside of Sec. 2
for EDSR-T (Sec. 3 for RNAN-T) is minimal, therefore we must consider similar-to-dissimilar ratios for
those sections as highly affected by noise. Nevertheless, we still observe higher similar-to-dissimilar
ratios in Sec1 and Sec2 for both EDSR-T and RNAN-T trained with locally constraint SSRs compared
to the baseline, which could indicate better utilization of self-similar information. We observe that
image regions selected based on self-similarity (Scenario 1 for EDSR-T and Scenario 1, Scenario 2
on RNAN-T) increase total norm distribution over the baseline. In case of random local selection
we observe minimal decline in attribution norm on both models. However, in case of RNAN-T
Scenario 4 increases attributions over Scenario 2, making it hard to tell whether our proposed prior
encourages self-similarity as selecting random regions lead to almost identical results. Moreover,
random scenarios even outperform selection based on self-similarity in terms of PSNR, see Table 4.5.
This analysis aimed at giving insights into the total attribution norm over the spatial dimension and
consequently its distribution between similar to dissimilar pixels. At this point, we cannot answer
confidently that models trained with our proposed attribution prior exploit non-local self-similarity
properties of natural images. Generally, we observe better SR performance when adding our prior to
the overall objective function, but do not obtain consistent improvement regarding selection of either
local or global SSRs compared to random image regions. Future work requires additional empirical
studies on the topic of attribution norm distribution. A current problem of this experimental setup is
the lack in controllability of informative content provided by random regions. Instead of random
picking, one could focus on dissimilar regions w.r.t the PoI defined by the candidate SSM.

3We conduct this experiment on HardCases testset for ×2 SR. Here, we select a larger sized PoI to compensate for the
overall larger input crop size of HardCases test samples [128× 128] in comparison to the crop size at training time
[48× 48].
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Method Parameter Set5 Set14 BSD100 Urban100 HardCases
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-T
Baseline - 37.42 0.9585 33.01 0.9127 31.78 0.8947 30.60 0.9118 28.24 0.9146

±0.0553 ±0.0001 ±0.0319 ±0.0001 ±0.0147 ±0.0001 ±0.0239 ±0.0004 ±0.0439 ±0.0007

BN - 34.77 0.9405 31.31 0.8940 30.49 0.8761 27.91 0.8672 25.32 0.8489
0.3139 ±0.0038 ±0.1732 ±0.0046 ±0.1237 ±0.0024 ±0.1091 ±0.0036 ±0.1043 ±0.0034

WD∗ 1e-4 35.15 0.9448 31.47 0.8978 30.54 0.8777 27.90 0.8699 25.28 0.8500
±0.0043 ±0.0001 ±0.0043 ±0.0001 ±0.0008 ±0.0001 ±0.0007 ±0.0001 ±0.0078 ±0.0002

NResBlocks 15 37.35 0.9584 32.96 0.9124 31.74 0.8942 30.53 0.9111 28.16 0.9139
0.0713 ±0.0001 ±0.0130 ±0.0003 ±0.0068 ±0.0004 ±0.0491 ±0.0008 ±0.0780 ±0.0014

Table 4.6: Results of applying regularization techniques on EDSR-T.We regularize EDSR-Tby removing
last residual block, adding BN layers to residual blocks and applying weight decay (∗ WD
denotes weight decay). Results were produced for ×2 super-resolution using described
training setup and averaged over 4 different random seeds.

4.5.4 Regularization of Super-Resolution Models

Conducted experiments still leave room for interpretation if our attribution prior encourages SISR
models to exploit self-similarity or acts as regularizer which prevents overfitting. Recent work by
Lin et al. [42] comes to the conclusion that SISR models suffer mainly from underfitting. The authors
investigate stronger data augmentations, mixup [83] and stochastic depth [29] as regularization
techniques and observe an overall decreasing reconstruction performance in terms of PSNR. Lin et al.
diagnose underfitting due to an still increasing validation curve at the end of training4. Regularization
is applied to generally reduce complexity in neural networks and can improve generalization to new
and unseen data. As described in Section 4.2, HardCases testset contains a selection of challenging
images with low average performance and high variance between different SR models [23]. We
are curious if applying standard regularization techniques, e. g. weight decay or BN, to our baseline
models affects their performance similarly as our attribution prior. Interestingly, the authors of
EDSR [41] remove BN layers from their residual block and experience better SR performance. We
regularize EDSR-T by adding BN, investigating weight decay as well as removing an additional
residual block. Then, we evaluate if applied regularization leads to comparable improvements on
HardCases testset. We report experimentation results in Table 4.6. We observe drastic decline in SR
performance on standard evaluation benchmarks when adding BN to the residual blocks of EDSR-T,
which is consistent with empirical findings made by [41]. Moreover, we evaluate on HardCases
testset but see no improvement either. Same holds when we regularize EDSR-T by removing the last
residual block or adding weight decay at training time. A possible explanation for the increasing SR
performance which we experience with our attribution prior is, that naively enforcing SR models
to incorporate non-local information suffices to generalize better to unseen data. Comparing SR
results from Section 4.5.3 to regularized EDSR-T (see Table 4.6), we can confidently say that our
proposed attribution prior may have regularization effects, but does not lead to better SR performance

4One can argue that validation PSNR saturates and even show tendencies of slightly declining towards to end of training.
Please see Fig. 2 in [42].
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Method HardCases
Total PSNR PSNR on SSR PSNR on PoI

EDSR-T
Baseline 32.2438 32.2529 32.2348

±0.1513 ±0.1436 ±01600

w/ ours 32.3844 0.1406↑ 32.3559 0.1030↑ 32.4129 0.1781↑±0.0725 ±0.0659 ±0.0848

RNAN-T
Baseline 32.3345 32.3289 32.3401

±0.2440 ±0.2656 ±0.2225

w/ ours 32.5135 0.1790↑ 32.5116 0.1827↑ 32.5155 0.1754↑±0.0545 ±0.0767 ±0.0362

Table 4.7: Results of evaluation only on SSRs in terms of PSNR on HardCases Testset [23]. We show
PSNR results for EDSR-T and RNAN-T trained w/ and w/o our proposed attribution prior.
We evaluated on NSSR = 5 SSRs and corresponding PoI with size [17× 17].

because of trivially reducing model complexity. Still, results from Section 4.5.3 remain ambiguous
and more experimentation is needed to derive to a deeper understanding of the effects imposed on
SISR methods by our method.

4.5.5 Evaluation on Self-Similar Regions

Even though the analyses presented in Section 4.5.2 and Section 4.5.3 did not lead to satisfactory
conclusions with regard to the right reasoning behind our proposed prior, we are still interested
to see whether SISR methods trained with our method improve on SSRs compared to respective
baselines. We quantify the reconstruction performance of investigated SISR methods on self-similar
image patches. We feed the images of HardCases testset through our extraction module and obtain
for each sample a candidate SSM. Next, we obtain the according SR model output, but instead
of evaluating PSNR on the entire image, we select NSSR = 5 SSRs per test sample and compute
PSNR results only on proposed SSRs. Table 4.7 shows PSNR results for baseline models EDSR-T and
RNAN-T and respective results obtained from training with our attribution prior. We outperform the
baseline method consistently by a large margin. Moreover, we report PSNR results on SSRs and on
corresponding PoIs. Remarkably, our attribution prior enhances reconstruction performance in terms
of PSNR of PoIs significantly. Besides, in Fig. 4.6 we visualize qualitative SR results produced by
EDSR-T model trained with our attribution prior from HardCases testset. Additionally, we display
self-similarity masks and extracted self-similar patches, respectively. Still, we do not observe clear
perceivable visual improvements of selected patches in comparison to the EDSR-T baseline hinting at
the problem of quantitatively assessing image quality [32, 87]. Please also refer to Section 2.1.2
where we explain the motivation behind perceptual loss functions. Moreover, we qualitatively show
the effectiveness of our extraction module. However, we show additional failure cases of our extraction
module in which a human annotator would have possibly chosen otherwise. Regarding the bottom
sample in Fig. 4.6, the first three SSRs (left to right) show similar pillar structures extracted from
the input sample, while last two SSRs depict different parts of the building. Certainly, extracted
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Figure 4.6: Visualization of proposed SSRs on HardCases Testset [23]. We show masks obtained
from our extraction module and corresponding SSRs for the EDSR-T trained w/ and w/o
our proposed attribution prior.

patches are similar in terms of contrasts and brightness variations but still depict two different parts
of the building in question. In Fig. 4.7 we show test samples from HardCases dataset for EDSR-T and
RNAN-T models both as baseline version as well as trained with our attribution prior. We observe
that our method helps at reconstructing high-frequency components. Looking at the first example for
EDSR-T (top row), our method sharpens the circular patterns. We see further visual improvement on
RNAN-T (bottom row) where our method corrects faulty reconstructions of the building structure.
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Figure 4.7: Qualitative examples of EDSR-T and RNAN-T trained w/ and w/o our proposed attribution
prior. We visualize test samples with largest difference between baseline and ourmethod
in terms of PSNR. Results are obtained from best method and worst baseline seed to
better visualize differences. Images are taken from HardCases testset [23].
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Method Scale Set5 Set14 BSD100 Urban100 HardCases
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [33] 2 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 - -
RDN [90] 2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 - -
RCAN [88] 2 38.27 0.9614 34.12 0.9216 32.41 0.9027 32.34 0.9384 - -
RNAN [89] 2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 - -
SAN [10] 2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 - -
PAN [91] 2 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273 - -
CS-NL [49] 2 38.28 0.9585 34.12 0.9127 32.40 0.8946 33.25 0.9118 - -
IGNN [92] 2 38.24 0.9616 34.07 0.9223 32.41 0.9024 33.23 0.9386 - -
SwinIR [40] 2 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9401 - -

EDSR
Lim et al. [41] 2 38.11 0.9601 33.92 0.9195 32.32 0.9007 32.93 0.9347 - -

Our Baseline 2 38.17 0.9611 33.86 0.9199 32.30 0.9012 32.71 0.9336 31.02 0.9449
±0.0276 ±0.0001 ±0.0287 ±0.0005 ±0.0061 ±0.0002 ±0.0679 ±0.0006 ±0.0679 ±0.0006

w/ ours 2 38.17 0.9611 33.85 0.9196 32.31 0.9012 32.76 0.9341 31.07 0.9453
±0.0106 ±0.0001 ±0.0363 ±0.0006 ±0.0207 ±0.0002 ±0.0139 ±0.0001 ±0.0113 ±0.0001

Table 4.8: Comparison to state-of-the-art SISR methods. We trained EDSR-B model /w and w/o our
proposed attribution prior for ×2 SR and report averaged results over 2 random seeds
due to limited resources. Bold indicates better results compared between our retrained
EDSR baseline and EDSR w/ our attribution prior.

4.6 Comparison to State-of-the-Art

Lastly, we compare our attribution prior applied to the base version of EDSR (EDSR-B) with published
state-of-the-art SISR methods in Table 4.8. We trained the EDSR baseline model with described
settings in [41] and report our results as well as SR numbers provided by the authors in [41]. Note,
we consider here only results for ×2 SR due to the limited resources regarding larger memory
consumption of higher SR scales. Training EDSR-B baseline method takes approximately 2 days
on a single Nvidia GeForce 2080 RTX, while our attribution prior increases training duration by
factor 2 and needs 2 Nvidia GeForce 2080 RTX due to increased memory consumption. We observe
minimal deviations between reported EDSR-B results and our retrained baseline model. Applying our
attribution prior with minimal settings (see Fig. 4.4, Scenario 1, λAP = 1× 10−4 and w = Sim) leads
to better SR performance on HardCases testset, Urban100 and BSD100, while being moderately
lower on Set14 in terms of PSNR compared to the retrained baseline. Future work should aim at
investigating more sophisticated and complex SISR methods in combination with our proposed prior,
e. g. training full-size RNAN-B model. Moreover, reporting results for higher SR scales, e. g. ×3 and
×4, and extension to other IR tasks should also be included in future work.
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5 Discussion

In this concluding chapter, we summarize the motivation and functional aspects of our proposed
method. Next, we continue with critically discussing our assumptions and empirical findings. Lastly,
we make suggestions towards further empirical validations and technical advances to our method.

5.1 Summary

The idea proposed in this work explores training of SISR networks with attribution prior. The
motivation behind applying attribution methods at training time is to encourage CNNs not only
to obtain accurate predictions, but to derive to correct predictions for the right reasons. Natural
images contain extensive amounts of self-similar information, e. g. repeating grid-like pattern such
as stripes of zebras or supporting pillars of buildings. Concluding from prior work on SR [23], the
main challenge of SISR methods remains the reconstruction of high-frequency information missing in
the LR input. Our extensive literature review shows that many works proposed incorporating more
non-local information for processing LR input images [89, 49, 48], while others [91, 39] suggest
exploiting the self-similarity property either within the same scale or even cross-scale.

As a consequence, we explore a novel approach for modeling non-local information with focus on
self-similarity. To the best of our knowledge, our method is the first application of attribution priors
to the SISR framework. We propose a pipeline in which different SR methods can be interchangeably
included and trained with our attribution prior. We extract meaningful self-similar information from
current LR training samples by a simple yet effective extraction module based on cross-correlation.
By exploiting obtained knowledge about valuable information in the input image, we aim at enforcing
SISR models to pay more attention towards existing non-local self-similar regions. Therefore, we
impose constraints on attributions computed w.r.t to a PoI to increase gradient norms of corresponding
self-similar regions. Following a rigorous evaluation protocol to empirically study our attribution
prior and its effects on SR models, we observe consistent improvement on standard SR benchmarks
and outperform baseline methods significantly on the challenging HardCases dataset. When applied
to the full-sized EDSR model, we confirm previous results on our tiny versions of SR methods and
again improve over the baseline significantly, e. g. HardCases testset. Finally, we come to a confident
answer to our motivational question in Chapter 1, whether SR methods can benefit from attribu-
tion priors specifically on challenging imagery. Besides, we define many hyperparameters for our
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attribution prior which on one hand offers the flexibility to fine-tune our method towards optimally
accompanying underlying SISR model, but on the other yields extensive experimentation for finding
correct hyperparameters. With this in mind, it is important to derive to valid assumptions about
chosen hyperparameters. For instance, we impose constraints on norm ratios by assuming similarity
between respective image regions. Therefore, we set hyperparameter w to be equal to self-similarity
values derived from the candidate SSM which we empirically validate to be indeed a good choice for
EDSR-T and RNAN-T methods, but unfortunately does not hold in case of RCAN-T.

But where there is light there is also shadow: Even though empirically showing promising results on
two SISR methods, it remains unclear whether our proposed method does encourage exploitation
of self-similar information after all. Despite of designing specific constraints to enforce increased
attribution norms over self-similar regions, our attribution norm analysis does not lead to a satisfactory
conclusion. Generally, we observe increased attribution norms but fail at extending the attribution
w.r.t the PoI beyond its close neighbourhood. Furthermore, we derive to controversial results when
investigating optimization with focus towards SSRs or random selected image patches. We conclude
in Section 4.5.3 with the hypothesis that locally increased attribution leads to our empirically validated
boost in SR performance. Consequently, picking either global self-similar or random regions can
be seen as irrelevant given the concentration of attribution around respective PoI. However, our
proposed attribution prior outperforms investigated regularization techniques substantially, showing
that our method does not trivially reduce model complexity to improve generalization. Further,
we must ask the question if just more involved pixels coincides with better SR performance. Given
empirical validation in Section 4.4, we see the sensitivity of SR networks trained with our method
towards the right amount of input pixels. One could draw an analogy between involved pixels and
receptive field, where simply building deeper networks does not necessarily correlate to better SR
results, see RCAN compared to IGNN in Table 4.8. Finding ways of effectively capturing benefits of
more involved input pixels should be further considered in future work.

5.2 Future Work

Generally, our empirical results show the potential of adding attribution priors to SISR pipelines, but
still leaves room for further development in future work. In Chapter 4, we studied the effects of our
attribution prior on three competitive and widely accepted baseline models for SISR and obtained
varying results. Clearly, the extension of our empirical study to other full-size state-of-the-art SR
methods is a logical next step to gather a better understanding of the effects caused by our attribution
prior. Besides, examining basic alterations to CNN architectures, e. g. network depth or dilated
convolutions, in combination with our prior poses an interesting ablation from which we hope to
gain more insights into inner workings of SR models. Moreover, larger scale SR requires effective
modeling of long-range dependencies in input images by SR models [54]. As our attribution prior is
designed to model non-locality, we hope to experience further improvements in SR quality by our
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attribution prior. Another exciting option is to explore different image restoration tasks, e. g. image de-
noising or image deblurring. We aim at further investigating our method in these challenging settings.

It is critical for effective attribution priors that computed feature attributions reflect the true behaviour
of neural networks. We discuss in Section 3.2 prior work on attribution methods for SR [23] and
the reasoning behind our selection of input gradients. Consequently, investigating other attribution
methods, e. g. axiomatic X -gradients [28], should be a focus of future work. Following our analysis
in Section 4.5.3, further evaluation of changes induced on SISR models by our attribution prior
is needed, e. g. comparison between optimization w.r.t dissimilar and self-similar image regions.
Furthermore, extracting meaningful information from LR inputs remains a challenging task as the
informative content is limited. Specifically, extracting useful high-frequency components from low
information input requires more sophisticated approaches. Even though results in Section 4.5.3 show
improvements using random regions instead, more experimentation is needed to investigate this
ambiguity. Besides, we rely on traditional image processing techniques to obtain valid self-similar
information. Future work should explore learnable approaches to effectively generate more represen-
tative features from low information input and simultaneously alleviate the human factor.
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