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Abstract

Markov random fields (MRFs) are popular and generic
probabilistic models of prior knowledge in low-level vision.
Yet their generative properties are rarely examined, while
application-specific models and non-probabilistic learning
are gaining increased attention. In this paper we revisit
the generative aspects of MRFs, and analyze the quality of
common image priors in a fully application-neutral setting.
Enabled by a general class of MRFs with flexible potentials
and an efficient Gibbs sampler, we find that common mod-
els do not capture the statistics of natural images well. We
show how to remedy this by exploiting the efficient sampler
for learning better generative MRFs based on flexible po-
tentials. We perform image restoration with these models
by computing the Bayesian minimum mean squared error
estimate (MMSE) using sampling. This addresses a number
of shortcomings that have limited generative MRFs so far,
and leads to substantially improved performance over max-
imum a-posteriori (MAP) estimation. We demonstrate that
combining our learned generative models with sampling-
based MMSE estimation yields excellent application results
that can compete with recent discriminative methods.

1. Introduction and Related Work
Markov random fields (MRFs) provide a sound prob-

abilistic framework for modeling and integrating prior
knowledge of images and scenes, and have found
widespread use across low-level vision, e.g., in image
restoration [8, 20, 31], super-resolution [25], stereo [3], op-
tical flow [14], etc. While the study of natural image and
scene statistics [23] provides key motivations for the use of
MRFs as well as particular modeling choices, such as the
shape of the potential functions, it is rarely evaluated how
well these statistical properties are captured by MRF mod-
els. More than 10 years ago, Zhu and Mumford [31] advo-
cated the use of sampling for evaluating their image prior
and computed derivative histograms from model samples.
Ever since, the generative properties of MRFs have been
largely ignored. Instead, model evaluation usually happens
in the context of a particular application, e.g., image denois-
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Figure 1. Pairwise MRF potentials and derivative marginals:
(a) Generalized Laplacian [25] (blue, dash-dotted), fit of the
marginals [22] (green, solid), and proposed flexible potential (red,
dashed). (b) Derivative histogram of samples from corresponding
MRFs, and statistics of natural images (black, solid). Typical mod-
els [22, 25] lead to an incorrect representation of image statistics.

ing in case of image priors [20]. This stems from the fact
that computing marginal distributions and other probabilis-
tic properties of MRFs is difficult. Sampling is largely the
only choice, but widely applicable algorithms, such as stan-
dard Gibbs sampling [31], are cumbersome and inefficient.

Recent years have seen a trend to move away from a
strict probabilistic interpretation of MRFs in low-level vi-
sion. On the one hand, this is due to the prevalence of max-
imum a-posteriori (MAP) estimation (e.g., [3]), which is not
affected by an arbitrary rescaling of the model’s energy. On
the other hand, even though probabilistically trained gener-
ative models of low-level vision [20, 27, 31] have been suc-
cessful, they have frequently required ad-hoc modifications
to perform well in practice. Moreover, due to the difficulties
of learning generative models, non-probabilistic discrim-
inative methods have gained momentum, including max-
margin [24] and loss-function based training [1, 14, 21].
While the performance of such application-specific models
is highly desirable, they lack the statistical interpretability
and versatility of generative MRFs.

In this paper we revisit and explore the generative, prob-
abilistic aspects of MRFs in low-level vision, and demon-
strate that a rigorous probabilistic interpretation and good
generative properties can go hand-in-hand with excellent
application performance. Even though many of our dis-
cussions remain general, we focus on image priors and im-
age restoration as concrete examples. We rely on a general
class of MRFs proposed by [27], whose clique potentials
use Gaussian scale mixtures (GSMs) [19] to model the re-
sponses to a bank of linear filters. This model encompasses



common pairwise MRFs [11, 13, 25] and Fields of Experts
(FoEs) [20], high-order models with large cliques. We take
advantage of the fact that MRFs with GSM potentials can be
efficiently sampled using an auxiliary-variable Gibbs sam-
pler [7, 12, 26]. With this toolset we analyze the gener-
ative properties of image priors using sampling. This in-
cludes marginals of model features, multi-scale derivatives,
and random filters. As a quantitative measure, we propose
the marginal KL-divergence of the respective marginals. In
contrast to [31], we use a more efficient sampler, and an-
alyze popular recent pairwise and high-order MRFs with
regards to their probabilistic properties. Surprisingly, we
find that these models are quite poor generative models
(e.g., Fig. 1), which apparently contradicts their good ap-
plication performance.

To understand this, we go beyond previous work and ex-
ploit the auxiliary-variable Gibbs sampler to learn pairwise
and high-order MRFs using contrastive divergence [9], and
analyze their generative properties. In contrast to typical
MRF models with simple parametric potentials, we rely on
more flexible GSMs that admit a wide range of possible
shapes. Unlike [27], we do not fit the GSM potentials to
the marginals ahead of time, but let the learning algorithm
determine their shape. For both pairwise MRFs and FoEs,
we find heavier-tailed potentials than have been considered
before, and demonstrate their ability to capture the statistics
of natural images. To our knowledge this provides the first
analysis of which potential shapes are crucial for capturing
natural image statistics in pairwise and high-order MRFs
with learned filters. Despite significantly improved genera-
tive properties, at a first glance our models perform surpris-
ingly poorly in an image denoising application.

In the last part of this paper we show that we need to
move away from MAP estimation to take full advantage of
generative MRFs. A number of recent theoretical and em-
pirical results [13, 17, 29] have already pointed to deficien-
cies of MAP estimation. In the context of image denoising,
we show that there is only a modest correlation between
the generative quality of the image prior and the resulting
denoising performance, which may also explain the preva-
lence of hand-tweaked models. To address these issues, we
use the auxiliary-variable Gibbs sampler to infer the poste-
rior mean, or Bayesian minimum mean squared error esti-
mate (MMSE) in image denoising and inpainting. Contrary
to common belief, we show that using sampling for poste-
rior inference of MRFs in image restoration is both feasible
and practical. Moreover, we demonstrate that the MMSE
estimate not only substantially outperforms MAP, but also
avoids several of its problems. Firstly, our approach no
longer requires ad-hoc modifications (cf . [20]), but achieves
state-of-the-art image restoration results in a purely gener-
ative setting, as compared to other random field models in
the pixel domain. Secondly, using MMSE we find the gen-
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Figure 2. Rapid mixing: Three subsequent samples (l. to r.) from
our learned models after reaching the equilibrium distribution.

erative quality of the model to be highly correlated with the
quality of the denoising result. Finally, we observe that the
MMSE avoids the inherent bias of MAP estimates toward δ-
like marginals [29]. In contrast to [29], our approach does
not require a modification of the proven MRF framework.

Other Related Work. Even though MRFs provide a gen-
erative framework of natural images and scenes, their gen-
erative properties have been studied only rarely since [31],
which is in contrast to local statistical models for which this
is commonplace [19]. Weiss and Freeman [27] derive a
likelihood bound that can be used to evaluate GSM-based
high-order MRF models. Lyu and Simoncelli [15] analyze
the marginals of their MRF model of wavelet coefficients
by sampling, and find them to be non-Gaussian, but not as
heavy-tailed as those of real image data. Levi [12] analyzes
the marginals of Fields of Experts using sampling, and finds
them to lack the heavy-tailed properties of natural images.
Here, we extend this analysis to a wider range of different
MRFs and show how to remedy this problem.

A number of authors have relied on sampling the poste-
rior distribution for inference in MRFs, starting with Geman
and Geman [8]. Fox and Nicholls [5] sample the posterior
of binary MRFs using perfect sampling, and find the MMSE
estimate to lead to more robust results. Barbu and Zhu [2]
develop an efficient Swendsen-Wang sampling scheme and
apply it to segmentation and stereo, but remain focused on
MAP estimation in an annealing framework. Kim et al. [10]
use population-based Markov chain Monte Carlo (MCMC)
methods for stereo, but also remain in MAP setting. Works
by Geman and Yang [7] and Levi [12] are most closely re-
lated to ours, as they both use efficient posterior sampling
for image restoration with MRFs. Performance is limited in
both cases, however, since [12] only uses a single posterior
sample, and [7] employs annealing-based MAP estimation.

While there is little work on using MMSE estimation
with MRFs aside from [5], MMSE estimation is more pop-
ular with local statistical models [19] and sparse representa-
tions [30]. Portilla and Simoncelli [19], for example, use the
MMSE for their GSM-based model of wavelet coefficients.
In contrast to the MRFs considered here, the local nature of
these models makes the MMSE much easier to apply.



2. Flexible MRF Model and Efficient Sampling
For our analysis of MRFs in low-level vision, we fo-

cus on image priors to ease exposition. Yet, we expect
many of the results to generalize to other models of scenes.
Rather than proposing a new prior, we rely on Fields of Ex-
perts (FoEs) [20], high-order MRFs whose clique potentials
model the responses to a bank of linear filters Ji. The prob-
ability density of an image x under the FoE is written as

p(x;Θ) =
1

Z(Θ)
e−ε‖x‖

2/2
∏
c∈C

N∏
i=1

φ
(
JT
i x(c);αi

)
, (1)

where C are the maximal cliques, x(c) are the pixels of
clique c, φ is an expert function, αi are the expert parame-
ters for Ji, and Z(Θ) is the partition function that depends
on all parameters Θ = {Ji,αi|i = 1, . . . , N}. The very
broad Gaussian factor e−ε‖x‖

2/2 with ε = 10−8 guarantees
the model to be normalizable even if the experts do not fully
constrain the image space [27]. Following [27], we use flex-
ible Gaussian scale mixtures (GSMs) [19] as experts1:

φ(JT
i x(c);αi) =

∑J

j=1
αij · N (JT

i x(c); 0, σ
2
i /sj). (2)

αij are the (normalized) weights of the Gaussian compo-
nent with scale sj and base variance σ2

i . GSMs have the
advantage that they allow a wide variety of heavy-tailed po-
tentials to be represented, including Student-t [20] and gen-
eralized Laplacians [25], and are yet computationally rela-
tively easy to deal with. We use a fixed base variance and
a wide range of 15 scales s = exp (0,±1, . . . ,±5,±7,±9)
to support a broad range of shapes.

Apart from a variety of FoE-based models [20, 21, 27],
this general class of MRFs subsumes popular pairwise MRF
models as well, e.g., [11, 13, 25]. For the pairwise case we
define a single fixed filter J1 = [1,−1]T and let the maximal
cliques C be all pairs of horizontal and vertical neighbors.

2.1. Auxiliary-variable Gibbs sampler

In order to provide a practical way of analyzing the gen-
erative properties of MRF priors through samples, an effi-
cient sampling procedure is required. Since direct sampling
is usually not feasible, Markov chain Monte Carlo (MCMC)
methods have to be used. Single-site Gibbs samplers [8, 31]
are very inefficient, as they need many iterations to reach the
equilibrium distribution. Other Metropolis-based samplers,
such as hybrid Monte Carlo [20], are sufficient for small
images, but exhibit slow mixing for larger ones as sample
dynamics have to be very small.

Here, we take a different route and exploit that our poten-
tials use Gaussian scale mixtures. In the context of Products

1Note that we sometimes use the terms potential and expert inter-
changeably, depending on the context.

of Experts [9], Welling et al. [28] showed that it is benefi-
cial to retain the scales of the GSM as an explicit hidden
random vector z ∈ {1, . . . , J}N , one scale for each expert.
Similar to a regular mixture model, one can define a joint
distribution p(x, z;Θ) of x and the auxiliary mixture coef-
ficients z such that

∑
z p(x, z;Θ) = p(x;Θ). [28] showed

that this allows defining a rapidly mixing auxiliary-variable
Gibbs sampler that alternates between sampling z(t+1) ∼
p(z|x(t);Θ) and x(t+1) ∼ p(x|z(t+1);Θ), where t de-
notes the current iteration. If one only cares about obtaining
samples of x, the zs can later be discarded. Similar ideas
have been pioneered by Geman and Yang [7] in the context
of MRFs. Levi and Weiss [12, 26] showed that this gen-
eral framework can also be applied to MRFs with arbitrary
Gaussian mixture potentials where z ∈ {1, . . . , J}N×|C|.
From Eqs. (1) and (2), we obtain the following conditionals

p(zic|x;Θ) ∝ αizic · N (JT
i x(c); 0, σ

2
i /szic) (3)

p(x|z;Θ) ∝ N

(
x;0,

(
εI +

N∑
i=1

WiZiW
T
i

)−1)
, (4)

where Wi are filter matrices that correspond to a convolu-
tion of the image with filter Ji, and Zi = diag{szic/σ2

i } are
diagonal matrices with entries for each expert and clique.
Sampling the scales according to Eq. (3) is straightforward,
since their discrete distributions are conditionally indepen-
dent given the image. Since the conditional distribution of
the image given the scales in Eq. (4) is Gaussian, it can
also be sampled without too much trouble. Difficulties arise
from the fact that the (inverse) covariance matrix is huge
with large images, which prevents an explicit Cholesky de-
composition as in [28]. Levi and Weiss [12, 26] showed that
this can be avoided by rewriting the covariance as

Σ =
(
εI +

∑N

i=1
WiZiW

T
i

)−1
=
(
WZWT)−1 (5)

and obtaining a sample x by solving a least-squares problem

WZWTx = W
√

Zy, y ∼ N (0, I), (6)

where the vector y is sampled from a unit normal; solving
this sparse linear system of equations is much more efficient
than a Cholesky decomposition. The advantage over single-
site Gibbs samplers [31] or patch Gibbs samplers is that the
whole image vector can be sampled at once, which leads
to an efficient sampling procedure with rapid mixing (see
Fig. 2) and fast convergence to the equilibrium distribution.

One problem frequently encountered with Markov ran-
dom fields is that boundary pixels are less constrained than
pixels in the image interior, which can lead to artifacts [18].
Boundary pixels are overlapped by fewer cliques in the
MRF, and tend to take on extreme values when sampling
the model. Since we found that this can affect learning



and the analysis of the model through sampling, we follow
Norouzi et al. [18] to keep a small number of pixels around
the boundary, xb, fixed and conditionally sample the interior
xi according to p(xi|xb, z;Θ). Since p(x|z;Θ) is Gaus-
sian, the required conditional distribution is easy to derive.
All derivations can be found in the supplemental material.

2.2. Convergence analysis

Whenever MCMC methods are used to compute ex-
pected values and marginals, only fair samples after con-
verging to the equilibrium distribution should be used to
estimate the quantities of interest. While the auxiliary-
variable Gibbs sampler mixes rapidly (see Fig. 2), a more
rigorous procedure for monitoring convergence is still de-
sirable. We use the popular approach by Gelman and Rubin
[6], which relies on running several Markov chains in par-
allel and initializing them at different over-dispersed start-
ing points. By computing the within-sequence variance W
and the between-sequence variance B of a scalar estimand
(here, the model energy), one can monitor convergence by
estimating the potential scale reduction

R̂ =
√(

(n− 1)W +B
)
/
(
nW

)
, (7)

where n is the number of iterations per chain. If R̂ is near
1, we can regard the sampler to have approximately con-
verged, since the chains have “forgotten” about their initial-
ization. For computing R̂ the first half of the samples is
always conservatively discarded. We refer to [6] for details.

3. Generative Properties of Common MRFs
Evaluating the quality of MRF priors is a long-standing

issue, as computing the likelihood of the model is in-
tractable, and likelihood bounds [27] can only provide lim-
ited insight. Consequently, the performance in a certain ap-
plication context is often measured instead [20, 25]; only
providing a rather indirect measurement of how good the
prior model is. In this paper we propose to revive and extend
the methodology of Zhu and Mumford [31], which takes ad-
vantage of the generative nature of image priors by drawing
samples from the model and evaluating its quality through
the samples. The central advantage is that this provides a
fully application-neutral way of evaluating MRFs.

In order to exploit the efficient Gibbs sampler for an
analysis of common MRF models, we convert them into the
required form, if needed. For this we fit the flexible GSM
potential from Eq. (2) to the target potential by minimizing
their KL-divergence through simple nonlinear optimization
of the weights αij . We achieve very good fits through a
wide range of different potential shapes (KLD < 0.0005).

To evaluate the baseline statistics of natural images, we
use a validation set of 3000 randomly cropped 32 × 32

non-overlapping patches from the test images of the Berke-
ley image segmentation dataset [16], and convert it to
grayscale. The properties of the MRF models, on the other
hand, are obtained by randomly sampling 3000 images of
size 50 × 50. To avoid boundary artifacts, we condition on
fixed image boundaries from a separate set of 3000 image
patches. The fixed boundaries are m − 1 pixels wide/high,
where m is the maximum extent of the largest clique; thus
every interior pixel is constrained by equally many cliques.
To avoid the effects of the boundary creeping into the ana-
lysis, we only collect sample statistics from 32 × 32 pixels
in the middle. To draw a single sample from the model dis-
tribution, we set up three chains and assess convergence as
described. We use three over-dispersed starting points: the
interior of the boundary image, a median-filtered version,
and a noisy version with Gaussian noise (σ = 15) added.

Pairwise MRFs. We first analyze the generative prop-
erties of pairwise MRF models, which remain popular un-
til today due to their simplicity. The study of natural im-
age statistics has widely found marginal histograms of im-
age derivatives to exhibit a sharp peak at 0 and heavy tails
(see Fig. 1), which motivates the use of heavy-tailed poten-
tials with shapes similar to the empirical derivative statis-
tics [11, 13, 25]. It has also become common to fit potential
functions directly to the derivative histogram [22, 27]. This
is at least unsatisfactory, since there is no direct correspon-
dence between potential functions and marginals in MRFs.

Do these potential functions actually allow capturing the
derivative statistics of natural images? We first consider
generalized Laplacians (φ(y) = exp(−β|y|γ), typically
γ < 1), which have been popular in the literature [13, 25]
(here, β = 0.5, γ = 0.7). We also consider GSM poten-
tials that have been directly fitted to the empirical marginals,
similar to [22, 27]. As Fig. 1 shows, neither potential allows
pairwise MRFs to capture the derivative statistics of real
images. The model marginals are much too tightly peaked
and the tails have an incorrect shape. Other potentials such
as truncated quadratics exhibit similar issues. Evaluating
other model properties appears pointless, since not even the
statistics of the model features (i.e., derivatives) are cap-
tured. This seems surprising, however, given how widely
used such models are. Since pairwise MRFs can be inter-
preted as maximum entropy models that capture first deriva-
tives (cf . [31]), the potential shape can be the only culprit.

High-order MRFs. Since pairwise MRFs are quite re-
stricted as they (at best) model the statistics of first im-
age derivatives, high-order MRF models have become in-
creasingly popular. While the early FRAME model [31]
was found to exhibit heavy-tailed derivative marginals, only
modest levels of image restoration performance have been
achieved. The more recent Field of Experts (FoE) and vari-
ants [20, 21, 27] differs through its parametric expert func-
tions and learned filters, and has shown to be among the
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Figure 3. Filter statistics of natural images and filter marginals
of FoE models (filters are normalized for ease of display): The
models of (a) Roth and Black [20], and (b) Weiss and Freeman
[27] show poor generative properties. The 3× 3 FoE learned here
(c) matches the statistical properties of natural images much better.

best-performing image priors.
We analyze their generative properties by looking at the

marginal distributions of filter responses. Since different
models have different features (i.e., filters), we evaluate
each model w.r.t. its learned bank of filters. We consider
both the original FoE with Student-t experts [20] and the
GSM-based FoE model of [27]. The study of natural im-
ages has found that even arbitrary zero-mean filters have
heavy-tailed statistics, which also holds for the learned fil-
ters (see Fig. 3, top). We confirm and extend the findings of
Levi [12], that the original FoE model [20] does not capture
the filter statistics (Fig. 3, bottom). The model marginals are
much too peaky for all filters, and exhibit a high marginal
KL-divergence. Beyond this, we find that the model of
Weiss and Freeman [27] shows similarly unsatisfactory re-
sults. This is again surprising, given how well FoEs perform
in real applications. Since FoEs can also be interpreted as
maximum entropy models [31] that constrain the statistics
of the bank of learned filters, this means either the paramet-
ric form of the experts or the learning procedure is at fault.

4. Learning Better Generative MRFs
To better understand the generative deficiencies of popu-

lar MRFs, we learn and analyze alternative MRFs. We rely
on the flexible GSM-based FoE models from Sec. 2 and
train them using the auxiliary-variable Gibbs sampler and
contrastive divergence (CD) [9], an efficient alternative to
maximum likelihood that does not require expensive equi-
librium samples. We learn the GSM weights αij as well
as the filters Ji, except where mentioned. We ensure posi-
tive weights by updating their log, and enforce

∑
j αij = 1.

The remaining details of the learning procedure are similar
to [20]: We use a fixed learning rate, exponential smooth-
ing of the gradient, zero-mean filters, and stochastic gra-
dient descent with mini-batches of 20 images. Our training
set consists of 5000 grayscale 50×50 image patches, which
were randomly cropped from the training images of [16]. To
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Figure 4. (a) Learned experts and filters and (b) efficiency of
CG-based MAP w/λ and sampling-based MMSE denoising.

avoid artifacts at the image boundaries, we use conditional
sampling during learning as suggested by [18]. We found
that this conditional learning procedure avoids overfitting
on the boundary pixels, yet is more efficient than avoiding
boundary effects by simply training on larger images.

Learned models. We trained (1) a pairwise MRF with fixed
horizontal and vertical derivative filters and a single GSM
potential, and (2) an FoE with 3 × 3 cliques and 8 GSM
experts including filters. For the pairwise MRF we used 15
MCMC iterations per CD step, as this yielded slightly bet-
ter results than 1-step CD. For the FoE we used 1-step CD
for efficiency. Fig. 1(a) shows the learned pairwise poten-
tial, which is significantly heavier-tailed than the marginal
derivative statistics and looks similar to a Student-t distri-
bution [11]. In contrast to the popular pairwise MRFs from
above, it correctly captures the marginal derivative statistics
of natural images (Fig. 1(b), marginal KLD = 0.006). Be-
cause of the maximum entropy interpretation of MRFs, this
potential shape is optimal for generative pairwise MRF im-
age models. As far as we are aware, this is the first time that
such an optimal pairwise potential has been reported ([31]
only presented optimal potentials for high-order MRFs).

In case of the 3 × 3 FoE model, we find very broad ex-
perts with a small, narrow peak (see Fig. 4(a)). Their al-
most δ-like shape is in contrast to the experts used before
[20, 27]. Fig. 3(c) shows that these learned experts lead to
a much better match between the filter statistics of natural
images and the filter marginals of the learned model. But
despite the significant improvement, the filter statistics are
not perfectly captured yet. Hence, further research needs to
go into finding even better parametric potentials for high-
order MRFs. We can conclude that the Student-t experts
of [20] were not heavy-tailed enough, and that fitting ex-
perts to marginal statistics [27] is not appropriate. Instead,
flexible expert functions and full learning of the experts are
necessary to achieve good generative properties.

Analysis. To fully comprehend the modeling power of
MRF priors, it is instructive to go beyond the model’s fea-
tures. A characteristic property of natural images is that
even arbitrary zero-mean filters have heavy-tailed marginal
statistics, as can be seen in Fig. 5(a) for filters of vary-
ing size. Another important property of natural images
is the scale invariance of their derivative statistics [23]
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(cf . Fig. 5(d)). We propose to analyze generative models
regarding these properties and to quantitatively measure the
KL-divergence between the marginal statistics of images
and the marginals of the model computed via sampling.
Note that [31] only analyzed the derivative statistics and
did not perform quantitative measurements. From Figs. 5(b)
and (e), we can see that the learned pairwise MRF captures
the statistics of small random 3 × 3 filters and derivatives
at the smallest scale well. The model marginals of larger
random filters and large-scale derivatives, however, tend to-
ward being Gaussian. The learned high-order FoE on the
other hand (Figs. 5(c) and (f)), captures the characteristics
of natural images across a much wider range of random fil-
ter sizes and derivative scales, which clearly demonstrates
the improved modeling power. This also becomes apparent
by visually comparing samples from both models (Fig. 2).
But since the statistics are still not perfectly captured, there
is clearly room for improved models in the future.

5. Image Restoration
To analyze the impact of our improved generative mod-

els on real-world applications, we evaluate them in the con-
text of image denoising and image inpainting. As is com-
mon in denoising, we assume i. i. d. Gaussian noise with
known standard deviation, and evaluate the peak signal-to-
noise ratio (PSNR). We test on two different test sets from
the Berkeley segmentation dataset [16]: A set of 10 images
used by [11], and a set of 68 images used by [1, 20, 21].
In case of image inpainting, we rely on a user-defined mask
and fill in the missing pixels using the prior alone (cf . [20]).
MAP estimation. As a baseline, we restore images through
maximum a-posteriori (MAP) estimation, as is usual in the
literature. We maximize p(x|y;Θ) ∝ p(y|x) · p(x;Θ)λ

w.r.t. x using conjugate gradients (CG), where p(y|x) is
the application specific likelihood, and λ is an optional reg-
ularization weight, which has frequently been employed
to obtain good application performance (e.g., [20]). We
compare our learned models against pairwise MRFs with
three potential functions (standard and generalized Lapla-
cian [25], and a marginal fit as in [22]) as well as two Fields-
of-Experts models [20, 27]. Table 1 shows that despite
their good generative properties, our learned models per-

form rather poorly when using MAP estimation and no reg-
ularization weight. With an optional regularization weight
λ (optimized on the test set), we can achieve improved re-
sults, but still do not outperform previous models. More-
over, such a regularization weight deteriorates the genera-
tive properties (at least for our models). Why do good gen-
erative models not perform well?

In unfortunately little known work, Nikolova [17]
showed this to be an intrinsic problem of MAP estima-
tion. To better understand this, we analyze the denoising
performance of pairwise MRFs with a wide range of poten-
tials from the family of generalized Laplacians φ(y;β, γ) =
exp
(
−β|y2+ε|

γ
2

)
, where β controls the width of the poten-

tial, γ controls the heavy-tailedness, and the small ε > 0 en-
sures differentiability. Moreover, we measure the generative
quality of the model through the KL-divergence between
the image derivative statistics and the model marginals.
From Fig. 6 we make two important observations about
MAP: First, the best performance is obtained from a con-
vex potential (γ = 1.0, i.e., Laplacian). Second, there is
only a moderate correlation between the generative quality
of the model and denoising performance. Not only does this
confirm the results of [17], it also offers an explanation why
better generative models have not been used in the litera-
ture: They simply performed poorly in the context of MAP.

5.1. Alternative approach: MMSE estimation

To circumvent these problems, we propose to perform
image restoration with MRFs by computing the Bayesian
minimum mean squared error estimate (MMSE)

x̂ = argmin
x̃

∫
||x̃− x||2p(x|y;Θ) dx = E[x|y], (8)

which is equal to the mean of the posterior distribution
and generally differs from the maximum in case of non-
Gaussian posteriors, as are used here. Contrary to MAP,
the MMSE estimate exploits the uncertainty of the model,
but was long regarded as being impractical due to the dif-
ficulty of taking expectations over entire images (cf . [17]).
To make this practical, we extend the efficient auxiliary-
variable Gibbs sampler to the posterior. In case of removing
Gaussian noise, we alternate between sampling the hidden
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Figure 6. Correlation between generative properties and de-
noising performance: Pairwise MRF with generalized Laplacian
potential and different parameters. (a) MAP denoising with CG
(“Lena”, 128×128 pixels, σ=20, red – high PSNR); PSNRmax =
28.07dB. (b) KL-divergence between derivative statistics of im-
ages and model marginals (blue – low KLD). (c) MMSE denoising
with sampling; PSNRmax = 28.26dB. While the correlation be-
tween KLD and PSNR of MAP is low (NCC = −0.43), the KLD
and PSNR of MMSE are highly correlated (NCC = −0.84).

scales according to Eq. (3) and sampling the image accord-
ing to

p(x|y, z;Θ) = N
(
x; Σ̃y/σ2, Σ̃

)
, (9)

where σ2 is the noise variance, Σ̃ =
(
I/σ2 +Σ−1

)−1
, and

Σ is defined as in Eq. (5). MMSE estimation for image
inpainting is possible through conditional sampling.

We compute the MMSE estimate by running 4 parallel
Markov chains from different starting points (noisy image
and smoothed versions from median, Wiener, and Gauss fil-
tering), which allows to assess convergence using the poten-
tial scale reduction. After discarding the burn-in samples,
we average all subsequent samples until the average images
from the 4 samplers are sufficiently close to one another
(< 1 grayvalue difference on average). The final image
is obtained by averaging the samples from all samplers2.
Figs. 7 and 8 show example results for inpainting and de-
noising. Fig. 4(b) shows the evolution of the PSNR over
time (and thus no. of samples) for one of the images. We
find that computing the MMSE using sampling is practical,
despite our simple MATLAB implementation, and much su-
perior to using only a single sample [12]. It is also easy
to accelerate through parallel programming due to multiple
samplers. Moreover, while MAP-based denoising using CG
achieves a high PSNR early on, the performance at the (lo-
cal) optimum of the posterior is often worse. The MMSE
does not exhibit such a problem for our models.

2Note that the learned models and sampling code for model analysis
and image restoration are available on the authors’ webpages.

Table 1. Denoising results (avg. PSNR) for 10 test images [11].
Model MAP MAP w/λ MMSE

σ=10 σ=20 σ=10 σ=20 σ=10 σ=20
pairw. (marg. fit [22]) 28.35 23.96 30.98 26.92 29.70 24.72
pairw. (g. Lapl. [25]) 27.35 22.97 31.54 27.59 28.64 23.92
pairwise (Laplacian) 29.36 24.27 31.91 28.11 30.34 25.47
pairwise (ours) 30.27 26.48 30.41 26.55 32.09 28.32
5× 5 FoE from [20] 27.92 23.81 32.63 28.92 29.38 24.95
15×15 FoE from [27] 22.51 20.45 32.27 28.47 23.22 21.47
3× 3 FoE (ours) 30.33 25.15 32.19 27.98 32.85 28.91

−100 0 100
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KLD=0.03

Figure 7. (Left) Derivative statistics of 10 denoised test images
(blue, dotted – MAP; red, dashed – MMSE) and of corresponding
clean originals (black, solid), σ=10, 20. (Right) Sampling-based
inpainting result (MMSE) from our learned pairwise MRF.

Experiments. Table 1 compares MMSE estimation against
MAP estimation, the latter with and without a regularization
weight. We find that the MMSE outperforms MAP estima-
tion, and when applied to good generative models, such as
our learned ones, it even stays ahead of MAP with an opti-
mal regularization weight. Note that this is despite MMSE
estimation operating in a purely generative setting with no
regularization weight required.

More extensive experiments on 68 test images [20, 21]
confirm these findings. Table 2 shows that using MMSE-
based denoising even our learned pairwise MRF outper-
forms the FoE of [20] using MAP, despite their much larger
5×5 cliques and noise-adaptive regularization weight. With
MMSE denoising using posterior sampling, our learned
3 × 3 FoE model not only further improves the perfor-
mance, but even outperforms the results of [21]. This is
remarkable since their discriminative approach explicitly
maximizes the denoising performance of MAP estimates,
and furthermore uses larger cliques and more experts.
In consequence, MMSE estimation enables application-
neutral generative MRFs to be competitive with MAP-
based denoising-specific discriminative MRFs (see supple-
mental material for additional results). We also compared
to two MMSE-related state-of-the-art methods outside the
random field literature: non-local means [4] (with tuned
parameters), and the wavelet-based BLS-GSM [19]; we
clearly outperform the former, and can compete with the
latter despite not being limited to denoising.

Beyond improved quantitative results, MMSE-based im-
age restoration has two other important advantages: First,
MAP solutions have often been found to be piecewise con-
stant with staircasing, which results in incorrect statistics
of the output image (cf . [29] and Fig. 7). Woodford et al.
[29] developed models that explicitly enforce certain statis-
tical properties of the MAP estimate, but needed to abolish

Table 2. Denoising results for 68 test images [20, 21] (σ = 25).
Model Learning Inference avg. PSNR
5× 5 FoE from [20] CD (generative) MAP w/λ 27.44dB
5× 5 FoE from [21] discriminative MAP 27.86dB
pairwise (ours) CD (generative) MMSE 27.54dB
3× 3 FoE (ours) CD (generative) MMSE 27.95dB
Non-local means [4] – (MMSE) 27.50dB
BLS-GSM [19] – MMSE 28.02dB



(a) Original image (b) Noisy image (σ=25),
20.34dB

(c) Learned pairwise MRF,
MMSE, 26.12dB

(d) 5× 5 FoE from [20],
MAP w/λ, 25.36dB

(e) 5× 5 discrimin. FoE
from [21], MAP, 26.19dB

(f) Learned 3× 3 FoE,
MMSE, 26.27dB

Figure 8. Image denoising example (cropped): Excellent restoration performance (PSNR) from generative models and MMSE estimation.

the well-understood MRF framework and had to rely on a
rather complex inference procedure. From a practical point
of view, Fig. 7 shows that we do not need to replace MRFs,
but that replacing MAP with MMSE estimation is already
sufficient to achieving the desired statistics of the output im-
age and circumventing this long-standing problem. Second,
Fig. 6 shows that the denoising performance of MMSE is
highly correlated with the generative quality of the model,
which in contrast to MAP suggests that better generative
models are likely to improve application results without re-
quiring any ad-hoc modifications.

6. Summary and Conclusions
Based on an efficient framework for analyzing the qual-

ity of MRF models using sampling, we found common im-
age priors to exhibit poor generative properties. We demon-
strated that this can be remedied with learned, flexible po-
tentials. Moreover, we showed that MMSE estimation ad-
dresses a number of shortcomings of the prevalent MAP
framework, and enables us to obtain excellent application
performance from generative application-neutral models,
that can even compete with recent, specialized discrimina-
tive approaches. We hope that our results will stimulate a
renewed interest in generative models for low-level vision.

Acknowledgements: We are very grateful to Yair Weiss for
sharing his ideas on the efficient Gibbs sampler that enabled this
work. We would also like to thank Arjan Kuijper and Michael
Goesele for discussions; and Kegan Samuel and Marshall Tappen
for making detailed results of their paper available to us.

References
[1] A. Barbu. Learning real-time MRF inference for image denoising.

CVPR 2009.
[2] A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling

arbitrary posterior probabilities. PAMI, 27(8):1239–1253, 2005.
[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-

mization via graph cuts. PAMI, 23(11):1222–1239, 2001.
[4] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for

image denoising. CVPR 2005.
[5] C. Fox and G. K. Nicholls. Exact MAP states and expectations from

perfect sampling: Greig, Porteous and Seheult revisited. Technical
report, Department of Mathematics, Auckland University, Auckland,
New Zealand, 2000.

[6] A. Gelman and D. Rubin. Inference from iterative simulation using
multiple sequences. Statistical Science, 7(4):457–472, 1992.

[7] D. Geman and C. Yang. Nonlinear image recovery with half-
quadratic regularization. IEEE TIP, 4(7):932–946, 1995.

[8] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. PAMI, 6:721–741, 1984.

[9] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Comput., 14(8):1771–1800, 2002.

[10] W. Kim, J. Park, and K. M. Lee. Stereo matching using population-
based MCMC. IJCV, 83(2):195–209, 2009.

[11] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief
propagation with learned higher-order Markov random fields. ECCV
2006.

[12] E. Levi. Using natural image priors – Maximizing or sampling? Mas-
ter’s thesis, The Hebrew University of Jerusalem, 2009.

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding
and evaluating blind deconvolution algorithms. CVPR 2009.

[14] Y. Li and D. P. Huttenlocher. Learning for optical flow using stochas-
tic optimization. ECCV 2008.

[15] S. Lyu and E. P. Simoncelli. Modeling multiscale subbands of pho-
tographic images with fields of Gaussian scale mixtures. PAMI,
31(4):693–706, 2009.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. ICCV 2001.

[17] M. Nikolova. Model distortions in Bayesian MAP reconstruction.
AIMS J. on Inverse Problems and Imaging, 1(2):399–422, 2007.

[18] M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional
restricted Boltzmann machines for shift-invariant feature learning.
CVPR, 2009.

[19] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image
denoising using scale mixtures of Gaussians in the wavelet domain.
IEEE TIP, 12(11):1338–1351, 2003.

[20] S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205–229,
2009.

[21] K. G. G. Samuel and M. F. Tappen. Learning optimized MAP esti-
mates in continuously-valued MRF models. CVPR 2009.

[22] H. Scharr, M. J. Black, and H. W. Haussecker. Image statistics and
anisotropic diffusion. ICCV 2003.

[23] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu. On ad-
vances in statistical modeling of natural images. J. Math. Imaging
Vision, 18(1):17–33, 2003.

[24] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph
cuts. ECCV 2008.

[25] M. F. Tappen, B. C. Russell, and W. T. Freeman. Exploiting the
sparse derivative prior for super-resolution and image demosaicing.
Int. Workshop SCTV, 2003.

[26] Y. Weiss. Personal communication, 2005.
[27] Y. Weiss and W. T. Freeman. What makes a good model of natural

images? CVPR 2007.
[28] M. Welling, G. E. Hinton, and S. Osindero. Learning sparse to-

pographic representations with products of Student-t distributions.
NIPS*2002.

[29] O. J. Woodford, C. Rother, and V. Kolmogorov. A global perspective
on MAP inference for low-level vision. ICCV 2009.

[30] I. Yavneh and M. Elad. MMSE approximation for denoising using
several sparse representations. 4th World Conf. of the IASC, 2008.

[31] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-
diffusion. PAMI, 19(11):1236–1250, 1997.


